
Parallel Programming
0024

Week 10

Thomas Gross

Spring Semester 2010
May 20, 2010



Outline
• Evaluation
• Discussion of Homework 09
• Presentation of Homework 10

– OpenMP revisited
– JOMP 
– Block Matrix Multiplication

• Questions?



Evaluation – Vielen Dank 

• 16 Fragebögen
+ gut vorbereitet
+ kompetent
+ begeistert
+ freundlich und hilfsbereit
+ gute Fragen

- Englische Aussprache

+ interessante und informative 
Beispiele

+ nicht nur Powerpoint
+ gutes Arbeitsklima
+ gute Erklärungen



OpenMP in a Nutshell
• OpenMP is an API that consists of three parts

– Directive-based language extension
– Runtime library routines
– Environment variables

• Three categories of language extensions
– Control structures to express parallelism
– Data environment constructs to express 

communication
– Synchronization constructs for synchronization



Parallel Control Structures
• Alter flow of control in a program

– fork/join model

single master thread

fork worker threads

parallel region

worker threads join

master thread continues



Parallel Control Structures
• Two kinds of parallel constructs

– Create multiple threads (parallel directive) 
– Divide work between an existing set of threads

• Parallel directive
– Start a parallel region

• For directive
– Exploit data-level parallelism (parallelize loops) 

• Sections directive
– Exploit thread-level parallelism (parallelize tasks) 

• (Task directive (OpenMP 3.0)) 
– Task with ordering (not possible with sections) 



Communication & Data Environment
• Master thread (MT) exists the entire execution
• MT encounters a parallel construct

– Create a set of worker threads
– Stack is private to each thread

• Data Scoping
– Shared variable: single storage location
– Private variable: multiple storage locations (1 per 

thread) 



Synchronization
• Co-ordination of execution of multiple threads
• Critical directive: implement mutual exclusion

– Exclusive access for a single thread

• Barrier directive: event synchronization
– Signal the occurrence of an event



Exploiting Loop-Level Parallelism
• Important: program correctness
• Data dependencies:

– If two threads read from the same location and at 
least one thread writes to that location

• Data dependence



Exploiting Loop-Level Parallelism
• Important: program correctness
• Data dependencies:

– If two threads read from the same location and at 
least one thread writes to that location

• Data dependence

– Example

for (i = 1; i < N; i++) 
a[i] = a[i] + a[i - 1];

Loop carried dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1] No dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]

for (i = 0; i < n/2; i++) 
a[i] = a[i] + a[i + n/2]

No dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]

for (i = 0; i < n/2; i++) 
a[i] = a[i] + a[i + n/2]

No dependence

No dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]

for (i = 0; i < n/2; i++) 
a[i] = a[i] + a[i + n/2]

for (i = 0; i < n/2+1; i++) 
a[i] = a[i] + a[i + n/2]

No dependence

No dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]

for (i = 0; i < n/2; i++) 
a[i] = a[i] + a[i + n/2]

for (i = 0; i < n/2+1; i++) 
a[i] = a[i] + a[i + n/2]

No dependence

No dependence

Dependence:
read(0+n/2) 
write(n/2) 



Important directives for the assignment

//omp parallel shared (a,b) 
private (c,d) 
– Starts a parallel region
– Shared: variable is shared across all threads
– Private: each thread maintains a private copy



Important directives for the assignment

//omp parallel shared (a,b) private 
(c,d) 
– Starts a parallel region
– Shared: variable is shared across all threads
– Private: each thread maintains a private copy

//omp for schedule(dynamic or 
static) 
– Distribute loop iterations to worker threads
– Dynamic: loop-chunks are assigned to threads at 

runtime
– Static: loop-chunk assignment before the loop is 

executed



Important directives for the assignment

• //omp critical
Code section is executed by a single thread at a time



Assignment 10
• Task 1

– Parallelize an existing implementation with OpenMP
– Which loop nest would you parallelize?

• Do you need a critical section?
• Task 2

– Implement a Block Matrix Multiplication
– Divide the source matrices into sub-matrices
– Assign a thread to each sub-matrix

• Which one performs better?
• Due: 1 Week



OpenMP in Java
• Not natively supported by Java
• JOMP: source to source compiler
• How to use?

– Download jar file from course page
– Import external jar to your project (classpath) 
– Perform the following steps

• java jomp.compiler.Jomp file(.jomp) -> file.java
• javac file.java
• java file



Any questions?


	Foliennummer 1
	Outline
	Evaluation – Vielen Dank 
	OpenMP in a Nutshell
	Parallel Control Structures
	Parallel Control Structures
	Communication & Data Environment
	Synchronization
	Exploiting Loop-Level Parallelism
	Exploiting Loop-Level Parallelism
	Can the loops be parallelized?
	Can the loops be parallelized?
	Can the loops be parallelized?
	Can the loops be parallelized?
	Can the loops be parallelized?
	Can the loops be parallelized?
	Important directives for the assignment
	Important directives for the assignment
	Important directives for the assignment
	Assignment 10
	OpenMP in Java
	Any questions?

