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Outline
• Evaluation
• Discussion of Homework 09
• Presentation of Homework 10

– OpenMP revisited
– JOMP 
– Block Matrix Multiplication

• Questions?



Evaluation – Vielen Dank 

• 16 Fragebögen
+ gut vorbereitet
+ kompetent
+ begeistert
+ freundlich und hilfsbereit
+ gute Fragen

- Englische Aussprache

+ interessante und informative 
Beispiele

+ nicht nur Powerpoint
+ gutes Arbeitsklima
+ gute Erklärungen



OpenMP in a Nutshell
• OpenMP is an API that consists of three parts

– Directive-based language extension
– Runtime library routines
– Environment variables

• Three categories of language extensions
– Control structures to express parallelism
– Data environment constructs to express 

communication
– Synchronization constructs for synchronization



Parallel Control Structures
• Alter flow of control in a program

– fork/join model

single master thread

fork worker threads

parallel region

worker threads join

master thread continues



Parallel Control Structures
• Two kinds of parallel constructs

– Create multiple threads (parallel directive) 
– Divide work between an existing set of threads

• Parallel directive
– Start a parallel region

• For directive
– Exploit data-level parallelism (parallelize loops) 

• Sections directive
– Exploit thread-level parallelism (parallelize tasks) 

• (Task directive (OpenMP 3.0)) 
– Task with ordering (not possible with sections) 



Communication & Data Environment
• Master thread (MT) exists the entire execution
• MT encounters a parallel construct

– Create a set of worker threads
– Stack is private to each thread

• Data Scoping
– Shared variable: single storage location
– Private variable: multiple storage locations (1 per 

thread) 



Synchronization
• Co-ordination of execution of multiple threads
• Critical directive: implement mutual exclusion

– Exclusive access for a single thread

• Barrier directive: event synchronization
– Signal the occurrence of an event



Exploiting Loop-Level Parallelism
• Important: program correctness
• Data dependencies:

– If two threads read from the same location and at 
least one thread writes to that location

• Data dependence



Exploiting Loop-Level Parallelism
• Important: program correctness
• Data dependencies:

– If two threads read from the same location and at 
least one thread writes to that location

• Data dependence

– Example

for (i = 1; i < N; i++) 
a[i] = a[i] + a[i - 1];

Loop carried dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1] No dependence



Can the loops be parallelized?
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a[i] = a[i] + a[i + n/2]

No dependence
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Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]

for (i = 0; i < n/2; i++) 
a[i] = a[i] + a[i + n/2]

for (i = 0; i < n/2+1; i++) 
a[i] = a[i] + a[i + n/2]

No dependence

No dependence



Can the loops be parallelized?
for (i = 1; i < n; i+= 2) 
a[i] = a[i] + a[i – 1]

for (i = 0; i < n/2; i++) 
a[i] = a[i] + a[i + n/2]

for (i = 0; i < n/2+1; i++) 
a[i] = a[i] + a[i + n/2]

No dependence

No dependence

Dependence:
read(0+n/2) 
write(n/2) 



Important directives for the assignment

//omp parallel shared (a,b) 
private (c,d) 
– Starts a parallel region
– Shared: variable is shared across all threads
– Private: each thread maintains a private copy



Important directives for the assignment

//omp parallel shared (a,b) private 
(c,d) 
– Starts a parallel region
– Shared: variable is shared across all threads
– Private: each thread maintains a private copy

//omp for schedule(dynamic or 
static) 
– Distribute loop iterations to worker threads
– Dynamic: loop-chunks are assigned to threads at 

runtime
– Static: loop-chunk assignment before the loop is 

executed



Important directives for the assignment

• //omp critical
Code section is executed by a single thread at a time



Assignment 10
• Task 1

– Parallelize an existing implementation with OpenMP
– Which loop nest would you parallelize?

• Do you need a critical section?
• Task 2

– Implement a Block Matrix Multiplication
– Divide the source matrices into sub-matrices
– Assign a thread to each sub-matrix

• Which one performs better?
• Due: 1 Week



OpenMP in Java
• Not natively supported by Java
• JOMP: source to source compiler
• How to use?

– Download jar file from course page
– Import external jar to your project (classpath) 
– Perform the following steps

• java jomp.compiler.Jomp file(.jomp) -> file.java
• javac file.java
• java file



Any questions?
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