
Parallel Programming
0024

Week 06

Thomas Gross

Spring Semester 2010
Apr 15, 2010

Classroom exercise
Consider this program (fragment) [PingPong] for thread

A (myid == 0) and thread B (myid == 1)
// thread A

public void run() {

while (true) {

A1: non_critical section

A2: while (!(signal.turn == 0)){}

A3: critical_section

A4: signal.turn = 1;

}

}

Class room exercise, continued
// thread B

public void run() {

while (true) {

B1: non_critical section

B2: while (!(signal.turn == 1)){}

B3: critical_section

B4: signal.turn = 0;

}

}

Your task (now!)
Show that these threads will never be both in their

critical section at the same time.

You should prove this property in a manner that’s
similar to the proof given in class.

Some thoughts on how to proceed

We introduced already labels for statements and
produced two distinct versions for thread A and
thread B.

Now you should formulate the invariant.

Invariant(s)
(i) at(A3) -> turn == 0

(ii) at(B3) -> turn== 1

(iii) not [at(A3) AND at(B3)] m

Proof strategy
Proof by induction on the execution sequence.

Base case: does (i) hold at the start of the execution of
the program (threads at A1 and B1)

Induction step: Assume that (i) holds. Will execution of
an additional step invalidate (i)?

Proof (i)
at(A1): condition (i) is false => do not care about signal

at(A2): condition (i) is false => do not care about signal

at(A3): condition (i) is true => turn == 0, follows from the fact that
turn was 0 at(A2) AND the transition from A2->A3 did not
change value of turn

at(A4): condition (i) is false ==> do not care about turn

Now, we consider:

at(B1) : no change to turn

at(B2) : no change to turn

at(B3) : no change to turn

at(B4) : changes turn to 0

=> Invariant 1 is true

Proof (ii)
Same way (please do it if you had trouble with proof of

i)

Proof (iii)
Induction start trivial.

Proof of induction step by contradiction.

Assume thread A entered CS (A3) at time t1

Assume thread B entered CS (B3) at time t2, where t2 = t1 + delta

--> CONTRADICTION: since we are in A3 signal MUST be 0 (cannot
be 0 and 1 at the same time)

Assume thread B entered CS (B3) at time t1

Assume thread A entered CS (A3) at time t2, where t2 = t1 + delta

--> CONTRADICTION: since we are in B3 signal MUST be 1 (cannot be 0
and 1 at the same time)

Classroom exercise (based on 3rd variation)

class Turn {

// 0 : wants to enter exclusive section

// 1 : does not want to enter ...

private volatile int flag = 1;

void request() { flag = 0;}

void free() { flag = 1; }

int read() { return flag; }

}

Worker
class Worker implements Runnable {

private int myid;

private Turn mysignal;

private Turn othersignal;

Worker(int id, Turn t0, Turn t1) {

myid = id;

mysignal = t0;

othersignal = t1;

}

Worker
public void run() {

while (true) {

mysignal.request();

while (true) {

if (othersignal.read() == 1) break;

}

// critical section

mysignal.free();

}

}

}

Master
class Synch3b {

public static void main(String[] args) {

Turn gate0 = new Turn();

Turn gate1 = new Turn();

Thread t1 = new Thread(new Worker(0,gate0, gate1));

Thread t2 = new Thread(new Worker(1,gate1, gate0));

t1.start();

t2.start();

}

}

Worker
public void run() {

while (true) {

mysignal.request();

while (true) {

if (othersignal.read() == 1) break;

}

// critical section

mysignal.free();

}

}

Worker 0
public void run() {

while (true) {

A1:

A2: s0.request();

A3: while (true) {

if (s1.read() == 1) break;

}

A4: // critical section

A5: s0.free();

}

}

Worker 1
public void run() {

while (true) {

B1:

B2: s1.request();

B3: while (true) {

if (s0.read() == 1) break;

}

B4: // critical section

B5: s1.free();

}

}

Mutual exclusion
Show that this solution provides mutual exclusion.

Invariants

(i) s0.flag == 0 equivalent to (at(A3) V at(A4) V at(A5))

(ii) s1.flag == 0 equivalent to (at(B3) V at(B4) V at(B5))

(iii) not (at(A4) at(B4))V

Induction
Show with induction that (i), (ii), and (iii) hold.

At the start, s0.flag==1 and at(A1) – ok

Induction step:

assume (i) is true. Consider all possible moves
A1  A2

A2  A3

A3  A3

A3  A4

A4  A5

A5  A1

Let’s look at them one by one:

Induction step
A1  A2 : no effect on (i) – ok

A2  A3 : (i) holds (s0.flag == 0 and at(A3)) – ok

A3  A3 : (i) holds, no change to s0.flag, at(A3) – ok

A3  A4 : (i) holds, no change to s0.flag, at(A4) – ok

A4  A5 : (i) holds, no change to s0.flag, at(A5) – ok

A5  A1 : (i) holds, s0.flag == 1 and at(A1) – ok

Note that the “– ok“ is based on the observation that no action by Thread
Worker 1 will have any effect on s0.flag

So (i) holds.

Your turn
Show that (ii) holds as well.

Sorry if you think this is trivial. You’re right.

Proving (iii)
Recall

(iii) not (at(A4) at(B4))

Use … induction.

At the start, at(A1) and at(B1), so (iii) holds.

Induction step: assume (iii) holds and consider
possible transitions.

Assume at(A4) and consider B3  B4 (while Worker0
remains at A4!)
no other transition is relevant or possible

But since s0.flag==0 (because of (i)), a transition B3 
B4 is not possible, so (iii) remains true.

V

…
Same argument applies if we start with the assumption

at(B4).

So no transition will violate (iii).

Of course this sketch of a proof depends on the fact
that no action by Worker0 (Worker1) will modify any
of the state of Worker1 (Worker0).

Any Questions?

	Foliennummer 1
	Classroom exercise
	Class room exercise, continued
	Your task (now!)
	Some thoughts on how to proceed
	Invariant(s)
	Proof strategy
	Proof (i)
	Proof (ii)
	Proof (iii)
	Classroom exercise (based on 3rd variation)
	Worker
	Worker
	Master
	Worker
	Worker 0
	Worker 1
	Mutual exclusion
	Invariants
	Induction
	Induction step
	Your turn
	Proving (iii)
	…
	Foliennummer 25

