
Parallel Programming
0024

Matrix Multiplication

Spring Semester 2010

2

Outline

• Discussion of last assignment

• Presentation of new assignment
 Introduction to matrix multiplication
 Issues in parallelizing matrix multiplication
 Performance measurements

• Questions/Comments?

3

Discussion of Homework 4

4

Questions to be answered
• Is the parallel version faster?

• How many threads give the best performance?

• What is the influence of the CPU model/CPU
frequency?

new Thread()

thread.start()

synchronized

sleep()

join()

interrupt()

NEW

RUNNABLE

BLOCKED

TIMED_WAITING

WAITING*

TERMINATED

- NEW
- BLOCKED
- WAINTING

- RUNNABLE
- TIMED_WAITING
- TERMINATED

6

Presentation of Homework 5

7

Matrix multiplication

• Problem: Given two matrices A, B of size N * N. Compute
the matrix product C = A * B with

Cij = Sum(Aik * Bkj) (0 <= k < N)

A, B elements are double-precision floating point numbers (“double”)

• Assume that A and B are dense matrices

• Sparse matrices have many zero elements

• Only the non-zero elements are stored

• Dense matrices have mostly non-zero elements

• Each matrix requires N2 storage cells

8

Parallel matrix multiplication

Which operations can be done in parallel?

= x

9

Programming matrix multiplication

• Java code for the loop nest is easy.
double[][] a = new double[N][N];
double[][] b = new double[N][N];
double[][] c = new double[N][N];

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

a[i][j] = rand.nextDouble();
b[i][j] = rand.nextDouble();
c[i][j] = 0.0;

}
}

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

for (k=0; k<N; k++) {
c[i][j] += a[i][k]*b[k][j];

}
}

}

10

Parallel matrix multiplication

• Data partitioning based on

• Input matrix A

• Input matrix B

• Output matrix C

11

Parallel matrix multiplication

• Data partitioning based on

• Input matrix A

• Input matrix B

• Output matrix C

• We assume that all threads can read inputs A and B

• Start with partitioning of output matrix C

• No need to use synchronized !

Parallel matrix multiplication

Each thread computes its share of the output C

Partition C by columns

T0 T1 Tx T…T…

= x

Two threads

One thread computes columns 0 .. N/2, the other
columns N/2+1 .. N-1

T0 T1

= x

14

Two threads

Thread 0

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

for (k=0; k<N/2; k++) {
c[i][j] += a[i][k]*b[k][j];

}
}

}

Thread 1

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

for (k=N/2; k<N; k++) {
c[i][j] += a[i][k]*b[k][j];

}
}

}

15

Other aspects
• Partition C by columns or by rows?

T0
T1

T…

= x

16

Other aspects
• What should be the order of the loops?

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

for (k=0; k<N; k++) {
c[i][j] += a[i][k]*b[k][j];

}
}

}

• Or?
for (k=0; i<N; i++) {

for (i=0; j<N; j++) {
for (j=0; k<N; k++) {

c[i][j] += a[i][k]*b[k][j];
}

}
}

• Or?

17

Performance Measurement

of threads
/matrix size

1 2 4 8 16 32 64 … 1024?

100 x

200 x

…

10,000?

18

Any Questions?

- synchronized

- Thread, Runnable

- wait(), notify(), notifyAll()

- Thread States

	Foliennummer 1
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Foliennummer 5
	Foliennummer 6
	Foliennummer 7
	Foliennummer 8
	Foliennummer 9
	Foliennummer 10
	Foliennummer 11
	Parallel matrix multiplication
	Two threads
	Foliennummer 14
	Foliennummer 15
	Foliennummer 16
	Foliennummer 17
	Foliennummer 18

