
Towards Finding an Optimal Image Compression Algorithm for Matlab:
ScaleCompress

David Itten, Martin Lanter, Daniel Schweizer
Computational Intelligence Lab Project, ETH Zurich, Switzerland

Abstract—We present ScaleCompress, a three-step image
compression algorithm. It first scales the input image to a
smaller size, then reduces the number of bits representing a
pixel, and additionally uses run-length encoding to further
reduce the size of the compressed image. The evaluation
shows that ScaleCompress performs clearly better than
our PCA and SVD-based solutions from the assignments.
ScaleCompress is very efficient for images with patches
of similar colors or color gradients (e.g. photographs of
landscapes or people), and performs sufficient on images
with lots of fine-grained details (e.g. texture images).

I. INTRODUCTION

Matlab offers a wide range of image manipulation tools.
All techniques applied by Matlab operate on matrices with
a minimum of 8 bits per cell. With this representation
it is not possible to improve the image compression rate
when using fewer than 8 bits to represent a pixel. Our
techniques try to leverage this problem by applying bit
level techniques in order to achieve a denser representation
of the images in Matlab. Our novel approach to find an
optimal image compression algorithm for Matlab is com-
bining three different algorithms described in section ??.

II. MODELS AND METHODS

ScaleCompress is a chain of three successive compress-
algorithms. It consists of the following steps:

• Scaling an image to a smaller size.
• Reducing the number of bits representing a pixel, thus

cutting off the least significant bits
• Merging sequences of equal values (runs).
The decompression algorithm simply goes through the

corresponding decompress-steps in reverse order. The fol-
lowing sections describe the steps of ScaleCompress in
more detail and explain how they are put together to form
a powerful and efficient compression algorithm.

A. Image Scaling

The Image Scaling algorithm uses Matlab’s image resize
function (with bicubic interpolation) to reduce the image to
a smaller size. To decompress the image again, just scale
the compressed image back to its original size. Scaling
compresses the image with a deterministic, predictable
compression rate. Thus, the algorithm’s compression rate
can directly and accurately be adjusted by modifying the
scaling factor. Scaling an image down blurs very capillary
details away. It however leaves the overall structure almost
untouched. In particular, color gradients remain almost
perfectly retained.

B. n-bit Compression

Matlab represents images as W×H×Z matrices, where
W and H are the width and height of the image and
Z is the number of color channels. The entries of such
a matrix are unsigned 8-bit integers. For compression
purposes, however, these values can be reduced to far less
bits (e.g. 4), which will only result in a marginal loss of
precision. BitCompress is a part of ScaleCompress that
takes a matrix M and returns a compressed form of it.
The parameter n defines the number of bits to be used
to represent one value. In order to achieve an optimal
usage of the n-bit representation, the values from M are
shifted and scaled in such a way that the smallest value
from M will be represented as 0, the largest value as
2n−1, and the other values are mapped linearly to their
corresponding representation in the interval [0 ... 2n−1].
Due to implementation reasons (Matlab doesn’t offer a 1-
bit data type), n-bit-compression returns the compressed
form of M as a vector. Additionally, it also returns the
size of the original matrix, such that the decompressing
algorithm is later able to recreate a matrix of the correct
size.

C. Run-length Encoding

When doing the bit compression, we additionally apply
run-length encoding [1] in order to get an even better
compression rate. Notice that this step is lossless. As the
bit compression narrows the number of different values
in the image representation (i.e. 16 for 4-bit instead of
256 for 8-bit), entries next to each other often have equal
values. At this point, run-length encoding can become
very effective. Looking at the sequence of n-bit integers
returned by the bit compression algorithm from above, we
can differentiate two cases:

• If there are L ≥ 2 equal values v in a sequence,
we call this a run. A run can be encoded in a space-
efficient way: BitCompress first writes a 0 bit to state
that the encoding of a run follows, then it uses r bits
(where r is an input parameter of the algorithm) to
encode the length of the run, and then it uses n bits
to encode v.

• If we have a single value (i.e. its neighbors are
different from it), BitCompress first writes a 1 bit
to state that the encoding of a single value follows.
Then, this value is encoded using n bits.

Figure ?? shows how BitCompress compresses some
small matrix (including run-length encoding). Notice
that the resulting output vector is not only shown as



a bitstring, but also as three 8-bit integers, as it has
to be stored in this form in Matlab. Also notice that
the decompressed matrix differs only slightly from the
original one.

Figure 1. Bit Compression using Run-Length Encoding of a 2x2 8-
bit matrix: a) The original matrix. b) The resulting vector when 4-bit
compression is applied to the original matrix. c) The resulting bitstring
when Run-Length Encoding is used to store the vector. The last four
bits are not used and will not be read in the decompression phase. d)
Interpretation of the bitstring as three 8-bit integers. This is how the
compressed vector is stored. e) Schematic representation of how the
blocks in the bitstring in c) have to be interpreted: The blue and green
blocks - initiated by a 1 bit - denote single values. The orange block -
initiated by a 0 bit - denotes a run of length 2. f) Restored matrix.

We also tried to use some Huffman encoding [2] for
lossless compression of images. The idea of Huffman
encoding is to use a smaller bit representation for pixel
values that occur more often within an image without
increasing the error of the compressed image. Unfor-
tunately the runtime of this algorithm was quite high
because of the large amount of linear-time lookups in the
encoding dictionary. Therefore, we didn’t further follow
this approach.

D. Algorithm Benchmark

There are three obvious criterions when benchmarking
an image compression algorithm: Runtime, compression
rate and compression error. Thus, any image compression
algorithm applied to a set of test images can be represented
as a point in 3-dimensional space, where one axis stands
for one criterion, respectively. The closer a point is to the
origin, the better the algorithm is. For the optimization
of ScaleCompress, we focus mainly on compression rate
r ∈ [0, 1] and compression error e ∈ [0, 1]. Therefore, we
define the benchmark b = e2 + r2 which is the squared

Euclidean distance from the point (e, r) to the origin. Both
values e and r have the same weight in this benchmark.
We treat the runtime only as additional information and
expect it to be sufficiently low but we don’t include it in
the benchmark.

We used this benchmark with a set of test images to
evaluate different compression algorithms. In particular,
we decided against the use of a PCA-based algorithm.
PCA’s runtime is somewhat lower than the runtime of
ScaleCompress. However, ScaleCompress yields results
with a significantly better compression rate and error
compared to PCA. A combination of both does not work
out well. Instead of benefitting from the strengths of
the two algorithms, rather their weaknesses dominate the
combination of the algorithms.

Furthermore, we found that algorithms using SVD
don’t lead to better results either. An implementation that
reshapes the image matrix to an almost quadratic size
before applying SVD turned out to be better than just
applying SVD but still didn’t reach the benchmark values
of ScaleCompress and moreover was significantly slower.

III. RESULTS

We evaluated ScaleCompress with three different sets
of images from the USC-SIPI image database1.

• misc: Various images with gradients like photos.
• aerials: Aerial photographs with structures like

streets.
• textures: Highly detailed structures like walls or bark.

The three different sets give us a rough grasp of how
ScaleCompress performs for different types of images.

A. Finding the optimal scaling factor

The scaling factor directly affects the compression rate
and error of ScaleCompress. While the compression rate
only depends on the scaling factor, the error also depends
heavily on the image itself. With a scaling factor s the
algorithm scales both width and height of an image down
by s, thus reducing the amount of pixels by 1/s2 in total.
The higher s is, the lower is the compression rate and the
higher is the error. In the worst case, scaling averages the
color of pixels and leads to an error of 0.5 per pixel. We
have measured the impact of scaling factors between 1 (no
scaling at all) and 32 and computed the benchmark values.
Figure ?? shows the average quadratic error and the
benchmark for the three different image test sets. For the
set misc the scaling factor 6 results in the best benchmark
value. For aerials it is 8 and for textures it is 4.

B. Finding the optimal parameter values for BitCompress

BitCompress has two parameters which must be chosen
carefully in order to achieve good results. The first param-
eter n is the number of bits used to represent a pixel of
the image. The second parameter r is the number of bits
that are used to decode the length of a run. Therefore we
analyzed the errors and compression rates varying both
parameters from 3 bits to 8 bits. Notice that using 8 bits for

1http://sipi.usc.edu/database, 15.6.2012



Figure 2. Average quadratic error (blue) and error standard deviation
(pink) and benchmark (black) for scaling factors from 1 to 32. The
optimal benchmark value is marked with a red star.

storing the pixels will make BitCompress useless as this
is anyway the representation used by Matlab. Figure ??
shows how the mean error evolves when changing the
number of bits per pixel. It can be seen clearly that
the error is much higher for the textures set, as our
compression techniques are not optimal for that kind of
images. The mean error for the other two test sets are
reasonably low and the mean error stabilize for all test
sets at a value of 4 bits per pixel. Notice that the number
of bits used to encode the run length has no influence on
the error because the run-length encoding is loss-free.

Figure 3. Mean error when changing the number of bits per pixel

When encoding with 4 bits per pixel, we see in figure ??
that the compression rates stay almost the same when
using 3 or 4 bits to encode the run lengths. When using
more bits, the compression rate decreases. We also varied
the number of bits per pixel, but because the error grows
quite fast for values lower than 4 bits and higher values
do not lead to a significantly lower error, we decided to
use 4 bits per pixel.

The standard deviation does not vary much with the
parameter selection. For n = 4 and r = 4 we calculated a
standard deviation of 0.0130 for the error, which is much
higher than the mean of the errors. This is the case because
some images within the test sets (4 of 44 images for
the misc test set) differ extremely from the mean error.
The compression rate is more stable and has a standard
deviation of 0.0009.

The example in Figure ?? shows the result of applying

Figure 4. Compression rates when changing the number of bits to
encode the run lengths

ScaleCompress to a test image. As a baseline, there is the
original image and an image created with a PCA-based
algorithm shown. The parameters of the PCA algorithm
have been choosen to achieve the same compression rate
as ScaleCompress does for this particular image. The
best result using PCA has been achieved by using two
eigenvalues and a patch size of 10 pixels.

Original ScaleCompress PCA

Figure 5. Comparison between PCA and ScaleCompress

C. Performance evaluation

For the performance evaluation ScaleCompress was
compared to two baseline algorithms (using our implemen-
tations from the assignments): an algorithm using PCA
and one using SVD factorization.

In a first experiment, we applied ScaleCompress to the
three image test sets and chose the parameters for the SVD
and PCA algorithms in such a way that we achieved ap-
proximately the same mean error as with ScaleCompress.
The comparison of the achieved compression rates with a
fixed error can be seen in table ??. For the textures test
set, where ScaleCompress produces a rather large error,
ScaleCompress still provides a compression rate which is
about 22 times better than the one achieved with SVD,
and twice as good as PCA. The aerials test set shows
the best results in this test. Here, the compression rate
of ScaleCompress is 32 times better than with SVD, and
again about two times better than PCA.

In a second experiment, we fixed the compression rate
that had been achieved by ScaleCompress and compared
the mean error of ScaleCompress to the mean error
of PCA and SVD. The results are shown in table ??.
ScaleCompress produced a mean error which was between
2.6 (textures) and 3.7 (aerials) times smaller than the
mean error of SVD. For the misc test set, we could not
even reach the fixed compression rate (which was 0.003)
with SVD. Compared to PCA, the mean error produced
by ScaleCompress was between 1.25 (textures) and 1.4
(aerials) times smaller.



Comparison of compression rates with fixed error
ScaleCompress PCA PCA/SC SVD SVD/SC

Aerials 0.0028 0.0059 2.12 0.088 31.6
Misc 0.0030 0.0056 1.85 0.073 24.1
Textures 0.0042 0.0082 1.94 0.093 22.0

Table I
AVERAGE COMPRESSION RATES OVER ALL IMAGE TEST SETS FOR

FIXED ERROR

Comparison of compression rates with fixed error
ScaleCompress PCA SVD

Aerials 3.122 (3.227) 0.606 (0.492) 3.117 (4.922)
Misc 0.497 (0.013) 0.238 (0.106) 0.301 (0.277)
Textures 0.922 (0.557) 0.569 (0.185) 0.537 (0.421)

Table II
AVERAGE RUNTIME (IN S) OVER ALL IMAGE TEST SETS FOR FIXED

ERROR (STANDARD DEVIATION IN BRACKETS)

IV. DISCUSSION

For all three image test sets, ScaleCompress yielded
better results than PCA and SVD. However, we can see
that the difference in performance compared to PCA/SVD
is clearly less significant for the textures test set than
for the other two test sets. ScaleCompress loses more
precision when compressing images with lots of fine-
grained details (such as textures), while it behaves much
better on images dominated by coarse-grained patches of
similar coloring or color gradients. This is exactly what
we expected.

One has however to be aware that ScaleCompress was
only compared to basic PCA- and SVD-based algorithms
from the assignments (which were most probably not
implemented in the best possible way). The comparison
to the solutions of the other project groups will certainly
be more informative.

Compared to PCA and SVD, ScaleCompress reaches
a significantly better compression rate for a fixed mean
error. This is due to the fact that scaling as well as
bit compression significantly decreases the size of the
compressed image, while only introducing a small error.

We can for example look at 4-bit compression, i.e.
representing each entry of a matrix with only 4 bits instead
of the standard 8 bits. Assuming that we use the full
spectrum of 8-bit numbers, this corresponds to mapping
the interval [0, 255] to the interval [0, 15]. Let’s assume
we have a 8-bit value V , compress it to a 4-bit value,
and then decompress this value back to D. We then have
D = floor(V/16)∗16, where D differs from V by at most
15 units. Thus, the upper bound for the mean quadratic
error which is generated by 4-bit compressen is 1/256.

One main parameter of ScaleCompress is the scaling
factor. The benchmarks evaluation suggests using a scaling
factor between 4 and 8. Since a factor higher than 4
erases a lot of structural details in an image and since
the benchmark for a factor of 4 is close to the optimum
for all three image test sets, we decided to use a scaling
factor of 4.

It is imaginable that parameters that perform best for a

Comparision of errors with fixed compression rate
ScaleCompr. PCA PCA/SC SVD SVD/SC

Aerials 0.0025 0.0036 1.40 0.0093 3.67
Misc 0.0056 0.0078 1.37 – –
Textures 0.012 0.015 1.25 0.032 2.64

Table III
AVERAGE ERRORS OVER ALL IMAGE TEST SETS FOR FIXED

COMPRESSION RATE

Comparison of errors with fixed compression rate
ScaleCompress PCA SVD

Aerials 3.122 (3.227) 0.751 (0.517) 3.126 (4.882)
Misc 0.497 (0.013) 0.156 (0.095) –
Textures 0.922 (0.557) 0.229 (0.129) 0.541 (0.429)

Table IV
AVERAGE RUNTIMES (IN S) OVER ALL IMAGE TEST SETS FOR FIXED

COMPRESSION RATE (STANDARD DEVIATION IN BRACKETS)

partial algorithm are not necessarily optimal values for
the combined algorithm ScaleCompress. Tests however
have shown that ScaleCompress does not improve when
using other values. Therefore, the main parameters that
define ScaleCompress are 4 for the scaling factor, 4 for
the amount of bits encoding a single pixel and 4 for the
amounts of bits encoding the length of a run of equal
pixels.

V. SUMMARY

ScaleCompress is an efficient and novel image compres-
sion algorithm. It provides a fair tradeoff between runtime,
compression rate and compression error. Its parameters
have been chosen to guarantee both a low quadratic mean
error and compression rate, weighting both factors equally.
ScaleCompress returns a well predictable compression
rate for an image. Furthermore, the algorithm is easily
adjustable. Increasing the scaling factor leads to an imme-
diate lower compression rate and lower runtime.

REFERENCES

[1] D. Pountain, ”Run-length Encoding”, Byte, vol. 12,
no. 6, pp. 317-319, 1987.
[2] D.A. Huffman, ”A Method for the Construction of
Minimum-Redundancy Codes”, Proceedings of the I.R.E.,
pp. 1098-1102, 1952.


