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Abstract

The Internet of Things (IoT) is envisioned as a global network of billions of smart
devices. Traditional protocols known from the Internet do not fit well with the constrained
environment these devices typically are found in. Thus, the IETF has standardized the
Constrained Application Protocol (CoAP). Devices can communicate over CoAP and be
integrated into Cloud services. We focus on the backend of such services that run on an
unconstrained machine. High numbers of services and especially clients call for efficient
processing and scalable services with high throughput. HTTP server architectures that
perform well in regards to these properties have been researched for over 15 years. We
analyze HTTP server designs thoroughly and apply the lessons learned to a new CoAP
framework for IoT Cloud services, a re-implementation of Californium (Cf). We present a
CoAP server design that is scalable and able to fully utilize a modern multi-core computer.
We evaluate our new and the old version of Californium and five HTTP servers on a
4-core SMP and a 16-core NUMA system. Our implementation achieves a throughput of
about 140,000 requests per second and even outperforms state-of-the art HTTP servers
by 15%-45%. The results substantiate that CoAP is superior to HTTP for IoT services
not only in constrained but also unconstrained environments. Furthermore, we propose a
powerful, yet simple API to develop scalable services for the IoT Cloud in an efficient and
productive way.
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Objectives

The student will evaluate alternative API designs in terms of learnability, usability, main-
tainability, extendibility, and efficiency. The most promising solution shall be implemented
to improve functional scalability of the framework.

The student shall re-design Cf’s internal architecture to improve load scalability, i.e.,
the throughput of handled requests.

The student shall make use of an appropriate testbed that enables stress testing the
system.

CoAP shall be compared to HTTP in an M2M scenario. Throughput, latency, and
reliability shall be evaluated using the testbed and a deployment of real devices, which
will be provided.

xiii





1 Introduction

The vision of the Internet of Things (IoT) is a world in which billions of everyday objects
are interconnected and extend today’s Internet pervasively into our daily lives. Sensors
and actuators of all forms and purposes and even the infrastructure of whole cities are
expected to be globally accessible and controllable in real-time [31]. Driven by Moore’s
law, the density of transistors continuously increases. Nevertheless, chip manufacturers
are more likely to utilize technological advances by reducing the size, costs and energy-
consumption of devices instead of their computing power [7]. Therefore, these devices
and their ability to communicate with others are constrained and traditional protocols
known from the Internet do not fit well. The Internet Engineering Task Force (IETF)
has standardized the Constrained Application Protocol (CoAP) which is designed for the
constrained environment that we find within the IoT [42].

CoAP implements a subset of HTTP’s RESTful [18] operations (GET, POST, PUT
and DELETE) and allows for a straight-forward mapping between the two protocols.
Therefore, they are often referred to as being cousins. However, CoAP has its own
mechanisms for (optional) reliability, observation, group communication, and discovery
of resources.

An essential part of the IoT is the autonomous, smart behavior of its devices. A
middleware allows building services that run in the Cloud and interoperate with devices.
Interoperability can be bidirectional in the sense that services access and control devices
and vice versa. Services can be combined to build new services and top-level applications
can be built to export the system’s functionality to the end-user [2, 9]. We focus on the
backend of services. We assume services to run on a strong, unconstrained machine and
simultaneously processing requests in the role of a server or send requests in the role of a
client.

1.1 Background

In 2011, the Californium (Cf) project started at ETH Zurich. Cf is a modular, open-source
framework that facilitates deployment of backend services [25]. Cf serves as intermediary
between the logic of a service and the IoT, i.e., it abstracts the communication over CoAP
and provides the developer with a powerful API to develop services in an efficient and
productive way. A first version of Californium was intended as prototype and “running
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1 Introduction

code” implementation of the CoAP standard and has progressively grown to test CoAP
extensions. In 2012, support for DTLS [22, 39] and CoAP and HTTP proxies [14] were
added to Cf. Actinium (Ac) [24] is a runtime container for JavaScript services built upon
Cf. Ac exposes a RESTful interface to install, configure, and update JavaScript services,
which can build an arbitrary resource structure to export their functionality.

Originally not designed for multi-threading, Cf does not scale well in the presence of a
multi-core processor. The belated addition of multiple threads has led to race conditions,
e.g., with non-thread-safe caches. The design of a static message gateway, called a
“communicator,” limits Cf to one port only, and therefore to only one transport protocol, one
CoAP processing implementation and one tree of resources. In particular, the integration
of DTLS and proxies was not seamless. Furthermore, Cf contained several bugs and
inconveniences that required incisive reimplementation. Therefore, it appeared more
economical to start over and use the learned lessons from the first version to design
and implement a new, second version with a better architecture, higher efficiency, and
scalability and an improved API. In this thesis, we call the first version “Old Californium
(OCf)” and our new solution “Californium (Cf)”.

Hosting a high number of services that all communicate with a large amount of devices
can lead to significant demand in computing power and message throughput. Our goal
is to design and implement a server that is able to utilize today’s prevalent multi-core
processors to perform well in both regards. Architectures that improve the throughput
of servers have been subject to research for over 15 years, albeit with focus to CoAP’s
cousin HTTP. We believe that insights into architectures for HTTP servers are invaluable
for the design of a CoAP server. Therefore, this thesis gives a detailed survey in the field
of server-architecture design and discusses implications that go inherent with CoAP and
HTTP. With the knowledge gained from OCf and HTTP servers, we design a new scalable
CoAP server architecture for Californium and compare its throughput to OCf and five
state-of-the-art HTTP servers.

1.2 Related Work

Several CoAP implementations already exist and either target constrained or unconstrained
platforms. CoAPBlip for TinyOS [36], CoAPSharp1 for the .NET Micro Framework,
SMCP2, libcoap [26], and Erbium (Er) for Contiki [23] are optimized for embedded
devices. Although these libraries could also be deployed on an unconstrained platform,
they are not designed for scalability and are not suitable for developing and maintaining
complex service systems. Sensinode3 has developed the “Sensinode NanoService Platform”
that includes libraries in C and Java for devices. These libraries are commercial and not

1http://www.coapsharp.com/, October 10, 2013
2https://github.com/darconeous/smcp, October 10, 2013
3http://www.sensinode.com/, October 10, 2013
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1.3 Outline

publicly available. For unconstrained platforms, there is the CoAP Python library by
UC Berkeley4, which primarily targets easy interaction with devices, though. The two
Java frameworks jCoAP5 and nCoap6 both target unconstrained platforms and are best
comparable to Californium. However, both do not implement the latest CoAP draft
version 18 and are still in an early optimization stage. Therefore, we cannot yet compare
Californium to those systems. None of these projects focus on scalability to the extent that
this thesis does. To the best of our knowledge, there is no related work on this topic yet.
Commercial solutions might have similar goals but there are no results published yet.

1.3 Outline

The particular, the contributions of this thesis are:

1. An extensive scalability evaluation of CoAP for service backends in comparison to
HTTP solutions.

2. The design of a scalable, efficient and extensible architecture for CoAP servers and
a simple open-source CoAP implementation.

3. A novice-friendly API for synchronous and asynchronous CoAP operations
4. A generic, distributed benchmark tool for CoAP servers

Chapter 2 explains and compares CoAP and HTTP in detail and discusses different
requirements for respective servers. In Chapter 3, we present six server architectures
and variations that were proposed during the last 15 years. We will use the gained
knowledge to design a new architecture for Californium in Chapter 4. Design decisions
and implementation details are covered in Chapter 5. In Chapter 6, we evaluate Cf, OCf
and five HTTP servers on a commodity quad-core notebook and on a many-core NUMA
system and discuss the results with respect to scalability in terms of multiple cores and
large number of concurrent clients. Chapter 7 points out some optimizations that improved
Californium’s performance on different platforms. Chapter 8 presents our new novice-
friendly API to develop CoAP services and to send asynchronous and synchronous CoAP
requests. Finally, we conclude in Chapter 9.

4http://www.openwsn.org/, October 10, 2013
5http://code.google.com/p/jcoap/, October 10, 2013
6https://github.com/okleine/nCoAP, October 10, 2013
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2 CoAP vs. HTTP

The Constrained Application Protocol (CoAP) understands itself as “a specialized web
transfer protocol for use with constrained nodes and constrained [. . . ] networks” [42]. In
the IoT, constraints on nodes typically emerge in terms of limited power supply, manu-
facturing costs, RAM, ROM, and generally low processing capabilities. Yet, constrained
nodes, i.e., devices, are powerful enough to send and receive network packets and benefit
from a connection to the Internet as they can be integrated into a distributed service. A
protocol such as the Hypertext Transfer Protocol (HTTP) [5,17], however, is too expensive
in terms of implementation code space and network resource usage [7]. Therefore, CoAP
has been designed to serve as a powerful, yet simple communication protocol in such an
environment. Since CoAP can easily be mapped to HTTP and since both follow the Rep-
resentational State Transfer (REST) architectural style, CoAP and HTTP applications can
be connected via transparent proxies and integrated into the same system. HTTP is based
on the reliable Transmission Control Protocol (TCP) [35]. Its reliability encompasses
not only the autonomic retransmission of unacknowledged messages but also duplicate
detection, message ordering, segmentation of large messages, and flow and congestion
control. CoAP instead is based on the unreliable User Datagram Protocol (UDP) [34],
and therefore has to implement certain guarantees of TCP on its own. Since TCP was
developed for the unconstrained Internet, CoAP uses different techniques that better suit
the constrained environment.

An entity participating in the CoAP protocol is called an endpoint [42]. An endpoint
lives on a network node and is identified by its IP address, port, and security associa-
tion. CoAP can be thought of as having two sublayers: the request/response-layer and
the message-layer. Messages are either confirmable (CON), non-confirmable (NON),
acknowledgements (ACK) or resets (RST). Confirmable and non-confirmable messages
carry requests or responses. When an endpoint receives a confirmable message, it replies
with an acknowledgement. The response to a confirmable request can be sent piggy-
backed with the ACK or in a separate confirmable response. An endpoint retransmits
confirmable messages with an exponentially increasing back-off timer until it receives
an acknowledgement, a reset or the maximum retransmission count is reached. 1 If an
endpoint receives a CON or NON that it does not know how to process, it rejects it with a
RST. A message is identified by a message ID (MID) and an endpoint needs to temporarily
remember incoming MIDs to detect duplicates. On the request/response-layer, requests
have a method code (GET, POST, PUT, or DELETE) and responses have a response

1Typically, the maximum retransmission count is 4, which allows for 5 transmissions in total.
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2 CoAP vs. HTTP

code (either of class 2.xx (success), 4.xx (client error), or 5.xx (server error)). A token,
chosen by the client, serves as identifier for a request. The server endpoint must include
the request token in the response so that the client endpoint knows to which request the
response belongs to. Additionally, CoAP requests and responses can be accompanied by
simple options, similar to HTTP header options. For example, options may describe the
content format or destination URI.

It is important to note that CoAP is more than just a compressed form of HTTP and
moreover provides several features that are beneficial in an M2M application. In this
section, we discuss how CoAP + UDP are superior to HTTP + TCP in constrained
environments.

2.1 Conceptual Comparison

Fewer messages: A typical CoAP exchange consists of 2 messages, i.e., a request and a
response. In contrast, an HTTP request first requires the client to establish a TCP
connection and later terminate it. This results in at least 9 messages for only one
request [11]. Note that this argument is not necessarily true for large payloads. After
TCP’s slow-start phase, it is able to send multiple packets at once and acknowledge
all of them with a single acknowledgement. CoAP’s blockwise transfer [8] though,
requires an acknowledgement for each block and leads to more messages and higher
transfer time. Since we expect the majority of CoAP messages to be rather short, this
is of less importance. However, CoAP’s blockwise mechanism allows a constrained
server to not only receive but also process a large request block-by-block. This
would not be possible if we used HTTP and TCP.

Compressed format: CoAP encodes option values in binary format while an HTTP
request is one large, verbose text. This saves the effort for converting numbers as
text to integers and makes the encoding more compact in general. A minimum
CoAP header is only 4 bytes long and a minimum UDP header is only 8 bytes long.
In contrast, a minimum TCP header alone is 20 bytes long plus what comes from
HTTP2. As a result, a message occupies less memory in a buffer or a network packet.
A bare CoAP request is not human-readable though.

Observe pattern: The observe pattern is a well-known architectural design pattern: a
client declares its interest in the occurrence of a specific type of event to a server and
is notified by the server when such an event occurs. In CoAP, a client can establish
such an observe relation with a resource which sends a notification when its state
changes. This mechanism is highly efficient, in particular compared to HTTP’s

2To give a rough idea: According to http://serverfault.com/questions/163511/what-is-the-mandatory-
information-a-http-request-header-must-contain (Sept. 25, 2013), a minimum legal HTTP request header
consists of 14 bytes. According to Google, http://dev.chromium.org/spdy/spdy-whitepaper (Sept. 25,
2013), today’s request headers typically vary between 200 bytes and 2 KB in the unconstrained Internet.
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2.1 Conceptual Comparison

polling where the same GET request must be resent over and over. There exist
workarounds for HTTP [28] but still “[...] generate significant complexity and/or
overhead and thus are less applicable in a constrained environment.” [21]

Resource discovery: CoAP defines a well-known URI /.well-known/core which
lists the URIs to available resources on a CoAP endpoint. URIs and descriptions of
resources are encoded in the Core Link Format [41] and can be requested by a GET
request from a client. The server can complement URIs with further attributes that
describe the resource. This mechanism allows autonomous devices and services to
efficiently discover other CoAP resources in a uniform and standardized way. In
contrast, the most prevalent technique for HTTP is crawling. A crawler starts at
a starting point, e.g., index.html, and analyzes all its content to find and follow
links to other resources and successively building up a resource tree. The client
basically needs to download and analyze the whole content of the server to have a
complete overview, making this mechanism highly inefficient.

Group communication allows a client to address multiple servers at once. This can
obviously save some effort for the client and can especially be useful for discovery.
CoAP features IP multicast [38]. Nodes can join a group represented by an IP
address and receive messages addressed to it. The source does not even know who
the destination nodes are. This is a best-effort approach and therefore unreliable.
Since IP multicast is very efficient [37], it fits the constrained environment well and
can in principle be implemented with existing (routing) protocols.3 Reliability for
IP multicast has been discussed [37, chapter 3.3.5.3] but later been dismissed [38].
IP multicast violates TCP’s connection oriented paradigm, and is therefore not
applicable for HTTP.

Deduplication: One disadvantage of CoAP is that it has to detect and filter duplicates
on its own, unlike HTTP, which inherits the reliability guarantees from TCP. A
CoAP server identifies a message by the pair of its source and message identifier
(MID) and has to remember it for a specific time4. Under heavy load, this becomes
a considerable overhead in terms of memory consumption and book-keeping effort.
TCP has comparable costs for managing connections. Within a connection, however,
TCP assigns a one-by-one increasing sequence number to each message, which
allows for a much simpler duplication detection mechanism. Obviously, TCP’s
advantage fades away when the number of clients, and therefore connections, grows
large as we expect in the the Internet of Things (IoT) .

3https://www.ietf.org/proceedings/81/slides/core-11.pdf, August 28, 2013
4The duration is 247 seconds for confirmable messages and 145 seconds for non-confirmable messages.

7

https://www.ietf.org/proceedings/81/slides/core-11.pdf


2 CoAP vs. HTTP

2.2 Server Specific Comparison

The executions of the two protocols CoAP and HTTP share similarities, yet have funda-
mental differences. To properly use knowledge about HTTP servers for an efficient CoAP
server, it is important to identify such similarities and differences and outline uncertainties.
Here, we only discuss the details of the two protocols in the context of a powerful server
running on an unconstrained platform. Servers on constrained platforms such as a simple
device have to address memory limitations or energy consumption instead.

Traditionally, HTTP has been used to access static content on a Web server. Typically,
a server had to load the content from a hard disk or a cache. Workloads for such Web
servers clearly were disk-bound, meaning the disk was the bottleneck and throughput
and response time heavily depended on the disk and I/O performance. Furthermore, disk
accesses are a source for synchronization overhead. With the emergence of CGI5 scripts
and servlet-like technologies to create dynamic Web sites, workloads shifted towards
being more dependent on the computational performance of a Web server. Yet, HTTP
servers still need to serve static content as well and should therefore perform well for
I/O intensive workloads. HTTP benefits from the rich infrastructure the Internet provides
with powerful network nodes and high-bandwidth links. For a CoAP server, the expected
workload is rather uncertain. Since CoAP is used in a constrained environment where the
message size is much more critical than for HTTP, it is rather uncommon that a CoAP
server needs to load hundreds of KB from a disk and send them over the network. Instead,
responses should be rather small and easily fit into a cache or be newly computed when
requested [7].

The typical structure of steps for handling CoAP and HTTP requests look quite similar
as shown in Table 2.1. In step 3, both servers need to find the exact destination of the
request. If the amount of files on an HTTP server or the amount of resources on the CoAP
server is small, the paths might be cached and the cache entries might even contain a
ready-to-use file descriptor or pointer to the resource. Otherwise, an HTTP server might
have to find the file on the disk or the CoAP server in the data structure that holds its
resources. Step 4 of the HTTP server is included in step 7 of the CoAP server. In HTTP
this step is useful because the client can already start to process the header while the server
is copying large amounts of data from the disk to the network interface controller. The
biggest difference is step 5 in which an HTTP server might read a large file from the disk
if it is not a dynamically generated Web page, while the CoAP server rather loads data
from memory or computes a response.

For an HTTP server thread, it might be much more important to be independent of the
data fetching (loading from disk) than it is for a CoAP server thread to be independent of
a resource that generates a response. An HTTP server might benefit from exporting data
loading to another thread, process or, in case of unblocking I/O, the OS. While the OS

5http://www.w3.org/CGI/
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2.2 Server Specific Comparison

CoAP HTTP

1 Get the datagram from the socket Accept connection

2 Interpret the request Interpret the request

3 Translate the path and find Translate the path and find
the resource the requested file (location)
a) From the cache a) From the cache
b) Search in the resource tree b) Search on the disk

4 - Send the response header

5 Handle the request and Read the file to
prepare a response the cache (if necessary)

6 Send the response Send the response body

Table 2.1: Structures of the processes for handling CoAP and HTTP requests.

loads data, the HTTP thread is able to compute something else. In contrast, a CoAP server
might even suffer from unnecessary context switches. Let us assume, we have one thread
to processes a request and generate the response and another thread that traverses through
the CoAP stack and ultimately sends the request. The first thread might load the response
from the main memory into the cache or newly compute it. Either way, since the other
thread might be running on another core, not only do we need a context switch but also
does the response data need to be transferred to the other core’s cache. Both penalties can
be avoided if the same thread processes the request and sends the response back.
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3 Server Architectures

Concurrent servers have been subject to research for more than fifteen years, in particular
HTTP Web servers. Originally, concurrent handling of requests was introduced to allow
servers to accept connections form multiple clients at the same time. The goal was
to better utilize the CPU during I/O operations but was not intended to scale servers
over multiple cores. At the latest with the advent of HTTP/1.1 in 1999, clients were
allowed to keep connections alive for multiple consecutive requests. A typical Web page
contained several links to images, flash content and other pages. Instead of repeatedly
connecting to the server for each link, a temporary connection allowed sending multiple
consecutive requests, and therefore avoiding many 3-way handshakes and TCP slow-starts.
In subsequent years, engineers came up with different server architectures that attempt to
increase server efficiency by mitigating bottlenecks such as synchronization. When servers
were equipped with multiple cores, the very same techniques of parallelizing concurrent
computations were used to utilize their multiplied computational capacity. In this chapter,
we present the most significant server architectures found in the literature:

1. Multi-Process (MP)
2. Multi-Threaded (MT)
3. Single-Process Event-Driven (SPED)
4. Asynchronous Multi-Process Event-Driven (AMPED) (1999)
5. Staged Event-Driven Architecure (SEDA) (2001)
6. Multi-Threaded Pipelined (PIPELINED) (2005)

Note that MP, MT, SPED, and AMPED originally have been proposed for single-core
systems.

3.1 Multi-Process

The Multi-Process (MP) architecture distributes the workload over multiple processes.
Most operating systems support multiple processes and make use of a sophisticated strategy
to schedule processes on one or more cores to optimally utilize their computational power
and guarantee fairness (especially the absence of starvation). Multiple processes are rarely
able to share global information such as a cache, though.1 When a client establishes a

1Unix systems provide the mmap operation that allows sharing memory among processes.
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3 Server Architectures

new TCP connection, the server forks a new process which processes all messages for that
connection. The MP architecture is shown in Figure 3.1.

Accept 

Connec�on

Interpret

Request
Find file

Send 

Header

Read file & 

send data

Process 1

Accept 

Connec�on

Interpret 

Request
Find file

Send 

Header

Read file & 

send data

Process n

Figure 3.1: Multi-process architecture: Each process processes all protocol steps.

3.2 Multi-Threaded

The Multi-Threaded (MT) architecture distributes the workload over multiple threads with
a shared memory address space as shown in Figure 3.2. It is crucial that the underlying
operating system supports kernel-threads. Since an application manages user-level threads
in user-space, they cannot be distributed over multiple cores. Worse, since user-level
thread scheduling is a form of cooperative scheduling, the kernel’s interrupt-handler cannot
preempt a user-level thread that invokes a blocking I/O operation and schedule another
user-level thread. The I/O operation blocks the whole application.
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Request
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Read file & 

send data

Figure 3.2: Multi-threaded architecture: Each thread processes all protocol steps.

Threads are able to access a shared cache concurrently. Modern programming languages
provide powerful synchronization tools and there exist whole libraries for efficient caching.
Yet, the synchronization of a large number of threads can lead to a significant overhead. In
a typical multi-threaded HTTP server, a welcome socket accepts new TCP connections,
creates a new socket and assigns a thread to it, thus, there is one thread per connection.
Usually, a thread closes its connection after a timeout has expired with no events on the
socket. As a result, there are two main factors that influence the server performance: the
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amount of available threads and the connection timeout. Beltran et al. [4] have found to
get the best performance for a server when setting the amount of threads to the amount
of expected concurrent connections and the timeout to infinity. Obviously, the amount of
concurrent connections is hard to estimate but can be adjusted at runtime with some effort.

A common disadvantage of MP and MT is that a large number of processes or threads
is required to support a large number of concurrent clients. If the allowed number of
processes (threads) is limited and all processes (threads) assigned, no further connections
can be accepted until a process (thread) closes its connection and is ready for a new one.
Creating and terminating a process (thread) is expensive. Therefore, most implementations
use a pool of reusable processes (threads). Processes (threads) allocate a considerable
amount of memory for their state and especially their stack. On a 64-bit Java Virtual
Machine, the default stack size of a thread is 1 MB. 2 Nonetheless, MP and MT have
been the architectures of choice for Apache’s HTTP server at the end of the 1990ies and
remained prevalent up to the present day.

The large number of threads is MT’s greatest weakness and all the following architec-
tures specifically try to avoid it. Notice that this is different for a CoAP server because
there are no connections. In CoAP, the requests of all clients arrive at the same socket and
no thread is blocked by an idle but still open connection. An MT solution for CoAP could
concurrently serve many clients with only few threads.

3.3 Single-Process Event-Driven

The Single-Process Event-Driven (SPED) architecture splits up the message handling
process into small tasks. Tasks use non-blocking I/O operations. When an event is
triggered (e.g., a new connection arrives, a file operation completes or a client socket has
received data or has space in its send buffer) a resulting task is added to the event queue.
A single event dispatching thread keeps popping tasks from the queue and executes them
one after another as shown in Figure 3.3. SPED is able to parallelize CPU, disk, and
network operations despite having only one thread. Since there is only one thread, no
synchronization is required, context switches can be saved, and data are always cache-local.
In return, SPED cannot benefit from multiple cores and, unfortunately, many operating
systems do not provide suitable support for non-blocking operations [30]. However, when
the new 1.4 release of the J2SE introduced the NIO (New I/O) API, Beltran et al. showed
in 2004 that an event-driven Web server written in Java and using NIO “[. . . ] scales
as well as the best of the commercial native-compiled Web server, at a fraction of its
complexity and using only one or two worker threads” [3]. In 2007 Pariag et al. proposed
an extension to SPED called Symmetric Multi-Processor Event Driven (SYMPED) which
forks multiple SPED processes [33]. Whenever a (SPED) process is stuck in a blocking
I/O operation, the OS switches to a process that is able to run.

2 http://www.oracle.com/technetwork/java/hotspotfaq-138619.html, July 02, 2013
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Figure 3.3: Single-threaded event-driven architecture: A single thread jumps from task to
task and uses non-blocking I/O operations.

3.4 Asynchronous Multi-Process Event-Driven

The Asynchronous Multi-Process Event-Driven (AMPED) [30] architecture uses, similarly
to SPED, a single dispatching thread as shown in Figure 3.4. The dispatcher, however,
only serves cache-hit requests. If there is a cache-miss, the dispatcher forwards the request
to a helper process (or thread) which fetches the data. Basically, AMPED wraps blocking
I/O operations in a separate process (or thread) to make them asynchronous. In 1999
(still the age of unicore processors), Vivek at al. implemented AMPED in a server called
Flash [30]. In 2000, PalChaudhuri et al. released a Co-AMPED version of Flash for
multiprocessors that used one AMPED process per core and outperformed Apache’s MP
implementation [32].
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Figure 3.4: Asynchronous Multi-Process Event-Driven architecture: Outsources blocking
operations to separate processes.
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3.5 Staged Event-Driven Architecture

The Staged Event-Driven Architecture (SEDA) [47] splits the message handling process
into multiple stages as shown in Figure 3.5. For instance, one stage is responsible for
interpreting a request and another one for loading data from the disk. Each stage consists
of an incoming event queue, a thread pool, and an event handler. The event handler can
be thought of as a function that executes the logic of the stage. The threads pull events
from the event queue and invoke the event handler which can forward new events to a
next stage. A stage is managed by a controller that can dynamically allocate new threads
according to a policy. Therefore, each stage of a SEDA server can self-tune itself to have
the optimal number of threads to exploit the benefits of parallel execution without the
drawbacks of a too large number of threads.

Welsh et al. invented SEDA and implemented an HTTP server called Haboob. Haboob
easily outperformed MP Apache and AMPED Flash [47]. Unfortunately, they compared
SEDA only to Apache’s MP version but not MT. In 2002, Larus at al. showed that a SEDA
server can even further increase its throughput when threads not only pull one but a batch
of events from the event queue at once and therefore improve cache-locality [27]. However,
in 2003, von Beren et al. suggested using compiler support to improve synchronization
and memory stack management of MT servers and presented results that outperformed
Haboob once again [46].
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Figure 3.5: Staged Event-Driven Architecture: Each protocol step is a stage. Each has
its own thread-pool and forwards processed messages to the next stage over a
queue.

3.6 Multi-Threaded Pipelined

A chain of stages can be seen as a pipeline. In contrast to SEDA, Multi-Threaded Pipelined
(PIPELINED) only has one thread per stage. Within a pipeline one thread forwards results
to the next thread. A PIPELINED server creates one pipeline per core as shown in Figure
3.6. Additionally, a pipeline can use helper threads to which it outsources blocking I/O
in case of cache-misses, similar to AMPED [12]. In 2005, Choi et al. have shown that
MT and PIPELINED outperformed all other architectures in terms of memory usage and
throughput [12]. In 2007, Pariag et al. showed that SYMPED (see above) and PIPELINED
can achieve an 18%higher throughput than MT [33].
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Figure 3.6: Pipelined architecture: The protocol steps form a pipeline where each step is
processed by one thread. Blocking operations can be outsourced to additional
threads (not in the image).

3.7 Comparison

The main difference between SEDA and PIPELINED is that a thread in SEDA forwards
an event to any thread of a next stage where a thread in PIPELINED always forwards an
event to the same thread in the next stage. An advantage of SEDA and PIPELINED over
MT is that fewer threads are necessary to handle a large amount of parallel connections,
and therefore reduce synchronization overhead. However, they both need to synchronize
threads between each stage. Furthermore, the time a request spends in the system can
increase due to traveling from stage to stage. Each stage change for a request means a
thread change which implies a context switch and a potential loss of cache-locality. This
can increase the latency a client experiences. In MP and MT, there should be much fewer
context switches while a request is processed. In 2010, M. Welsh, the author of SEDA,
reviewed his design and wrote in his blog: “Most stages should be connected via direct
function call.” 3 This basically means to merge two stages together, since too many stages
are just not worth it.

Genevès compared the MT architecture to AMPED and SEDA on an eight core machine
[19]. When varying incoming connections per second, all models reached the peak
throughput simultaneously at 9000 connections per second. Eight cores achieved only 2.3
times the performance of a single core and the difference between four and eight cores
was only marginal. He found that with eight cores, the memory bus between cores was
totally overloaded, allowing no further performance improvement when using even more
cores. Beltran et al. showed in 2008 that a hybrid Tomcat server [10] that combined MT
and SPED was able to outperform MT Tomcat on CPU-bound workloads if the number of
concurrent clients exceed 2000 (but they perform equally up to that point) [4]. In 2012,

3http://matt-welsh.blogspot.ch/2010/07/retrospective-on-seda.html, August 02, 2013
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3.8 Alternative Scalability Strategies

Harji et al. extensively benchmarked multiple Web servers on quad-core SMP systems
and concluded “[. . . ] that implementation and tuning of Web servers is perhaps more
important than server architectures.” [20]

In summary, there exist a plethora of models, implementations, workloads, and experi-
ments. Results depend heavily on the underlying platform (caching protocol, non-blocking
I/O support, etc.) and used workloads (disk-bound, memory-bound, computation-bound,
small/large files, cache-hit rate, etc.). Results of different papers are often contradictory.
Our evaluation in Chapter 6 is going to show, whether Californium exhibit similar behavior
as their HTTP cousins and whether the simpler CoAP protocol allows better scalability
than HTTP.

3.8 Alternative Scalability Strategies

Using multiple processors and cores in one machine is a form of vertical scaling. Papers
that suggest horizontal scaling, i.e., using multiple machines with load balancing, have
been published as well [29]. Since horizontal scaling is out of the scope of this thesis and
CoAP application workloads are not expected to be disk-bound, these approaches are less
important for us. On the other side of the spectrum, the HTTP protocol has been translated
into a finite state machine to ease HTTP integration into constrained devices [13]. There
have been many further approaches to increase Web server performance. Since the main
purpose of most HTTP servers is to only serve HTML Web pages or media files to clients
and therefore need to read a lot of data from the hard disk, engineers have presented
approaches to boost disk-bound workloads. For instance, the server scans the HTML files
served to a client for links to local files, e.g., images, and starts to preload these files into
the cache as it is to be expected that the client will request them right away [1]. Some
approaches focus on dynamic content. In 2009, Hop Web Server [40] was proposed, a
server that compiled third-party software at runtime and merged it into the server’s runtime
environment. Hob Web Server outperforms Web servers that rely on CGI or FastCGI
protocols.
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In this chapter, we discuss our proposal for the architecture of our CoAP server, the
re-implementation of Californium (Cf). We first highlight the most relevant goals that have
influenced our design decisions. Second, we describe how we structure the elements that
make up CoAP and how they exchange information. Finally, we propose a concurrency
model that specifies how the elements are parallelized.

4.1 Design Goals

In the field of software engineering, the list of expressions for software qualities is long.
ISO/IEC 25010:2011 1 alone defines 40 of them—from “accessibility” to “user-interface
aesthetics.” Some of them are rather obvious, e.g., correctness; others are synonyms or at
least do overlap, e.g., maintainability, extensibility, and adaptability. This section gives a
non-exhaustive list of non-obvious goals and explains why we believe them to be relevant
for Californium.

4.1.1 Completeness

Californium enables an application to appear as both CoAP client and CoAP server. First,
it enables the application to send CoAP requests to CoAP resources and receive the
response. Second, as server, the application is able to export CoAP resources which
process incoming CoAP requests and respond to them. Since Cf is able to not only receive
but also send requests, it can also serve as intermediary such as a caching proxy. We
identify the following three main high-level workflows in Cf:

1. Construct a server and add resources. The server should be able to be started and
stopped.

2. Receive a request, find its target resource, let the resource process the request and
send the response back to the client.

3. Issue requests as client and wait for responses to allow for proxies or more complex
services that use and aggregate Web services themselves.

1 https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en, August 22, 2013
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4 Design

Californium must be designed so that these workflows can be implemented.

4.1.2 Scalability

A traditional indicator for server performance is throughput, i.e., processed requests per
second. It is not our prior goal to achieve a throughput as high as an optimized C library for
CoAP. Instead, we favor vertical scalability when multiple processor cores are available.
Cf’s architecture should allow the whole processing chain to be efficiently distributed over
multiple cores. To this end, we will need a concurrency model that specifies which and
how processes are parallelized and synchronized. Concurrency is often a source for race
conditions and causes the need for synchronization. Overhead due to synchronization
among parallel processes is the nemesis of scalability. Therefore, our goal is to introduce
as little synchronization as possible but as much as required for satisfying the CoAP
protocol.

4.1.3 Flexibility

It is clear that there is no silver bullet that scores highest in all aspects. For instance,
synchronization that comes with multi-threading clearly is an adversary to understand-
ability. In general, optimizations often come in form of shortcuts that lessen flexibility,
extensibility, and in particular maintainability. Typically, a design decision affects different
machines and applications much differently. Therefore, our goal is to keep Cf as flexible
as possible and give the programmer instruments to modify Cf’s behavior as much as
possible.

4.1.4 Usability

Californium should be easy to learn to use. Developers should be able to compose services
that export their functionality in resources, build up resource trees, and connect servers to
the network. It should be simple to synchronously or asynchronously send requests and
react to responses or failures. It should be easy for the developer or even the end-user to
dynamically configure the parameters of Californium. Therefore, we need a well-designed
API that is simple and powerful.

4.1.5 Understandability

Even though the core of CoAP is on the verge of becoming an RFC, CoAP is still subject
to extensions. Cf’s design should accommodate for that. It is natural to understand CoAP
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as a combination of multiple semantic components such as reliability of transactions,
deduplication of messages, blockwise transfer and so on.2 These components are not
necessarily independent of each other. For instance, when a confirmable notification
of an observed resource fails to be transmitted to the client and timeouts, the observe
relation should be canceled. Furthermore, blockwise transfer splits up the exchange of a
single request and a single response into an exchange of a potentially much larger amount
of requests, responses, and acknowledgements. Some components require information
whether a given message is the full message or only a block of it.

The proposed architecture should define the place of these separate conceptual com-
ponents in the system and how they interact so that the required dependencies can be
satisfied. With such an architecture at hand, we can reason about whether the system
satisfies the semantics of CoAP and the understanding of the system eases maintenance
and leverages further extensions. Therefore, the placement of these components and the
way they exchange information must be chosen carefully. The more logical and simpler
CoAP’s conceptual components are connected, the easier a developer, who looks into the
code, can understand the system and the less prone to errors it becomes.

4.2 Architecture

We propose to logically split up a CoAP server into three stages: resources, endpoints, and
connectors. Figure 4.1 visualizes how these three stages build up a Cf server. A program
that appears only as client would only operate with endpoint and connector. We explain
these three stages in the following sections.

Endpoint

Connector

Endpoint

Connector

Endpoint

Connector

Resources

Figure 4.1: We split up Californium into three stages. The server has a resource tree, one
or more endpoints and each endpoint has exactly one connector.

2Unfortunately, not only the environment CoAP is meant for but also our human brain has limitations so
that we are unable to grasp the complete CoAP protocol as one piece but require dividing it into simple
human-brain-understandable concepts.
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4.2.1 Resource

Resources are the main building blocks that the developer is going to use to export the
functionality of its application over CoAP to the world. A CoAP resource provides a
RESTful interface to clients. It makes itself accessible and modifiable by reacting to
requests that carry one of the four request codes defined in CoAP: GET, POST, PUT, or
DELETE. Each server holds a tree structure where each node is a resource. Each resource
is identified by a URI that is composed of the URI of its parent plus its own name. When a
request arrives at the server, it searches the resource tree for a resource that corresponds to
the destination URI of the request. If the server finds the resource, the resource processes
the request and responds with an adequate response code, options, and payload according
to the CoAP protocol. If the server cannot find the destination resource, it responds with a
4.04 (Not Found) error code.

4.2.2 Endpoint

Endpoint

Encoding

Token

Blockwise

Reliability

Resources

Delivery

Observing

Connector

Deduplica on

Matching

Figure 4.2:
Structure of the CoAP
stack in an endpoint.
Each component (green)
is implemented as a
layer.

An endpoint wraps the implementation of the CoAP protocol,
i.e., it contains the processing chain that processes incoming and
outgoing CoAP messages. A server has one or more endpoints
that are connected to its resource tree. When a CoAP request
arrives, the endpoint processes the required steps according to
the protocol, e.g., decoding the datagram into a request-object,
duplication detection, etc. Finally, the endpoint forwards the
request to the resource tree, which will handle it and respond
with a response over the same endpoint. An application can also
use the endpoint to send requests to another CoAP server and
will later receive the response.

As described in section 4.1.5, we understand CoAP as a com-
position of conceptual components; some of which depend on
information from each other and some do not. The structure in
which we place these components has to satisfy all these depen-
dencies. We identify the following conceptual components:

1. Token management to generate an ID for new requests.

2. Observe relations from clients to a resource.

3. Blockwise transfer to split up the transmission of one
large message into multiple smaller ones.

4. Transfer reliability through retransmitting unanswered
confirmable messages.
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5. Matching of incoming responses, acknowledgements, and
resets to former outgoing messages and duplicate detec-
tion.

6. Encoding messages to byte strings and decoding byte
strings into an internal representation of a message.

Notice that not all these components can be properly associated to one of the two logical
sublayers [42, p. 10] that CoAP describes (request/response layer and message layer).
The layer for blockwise transfer, for instance, needs to receive acknowledgements (part of
message layer) and responses (part of request/response layer) to initiate the transmission
of a next block.

In the first version of Californium (OCf), it was proposed to implement these compo-
nents as layers stacked upon each other and using a common interface to forward messages
upwards through the stack as well as downwards. The main advantage of such a layered
structure is understandability and extensibility. The resulting workflow is linear by design
and the order in which these conceptual components are invoked is strict for all messages.
This is simple and better understandable than a finite state machine, for example. We have
adopted this design from OCf and will refine its implementation in Chapter 5 to achieve
even better understandability, maintainability, and support for concurrency. The stack of
layers that Californium uses is shown in Figure 4.2.

Using a stack of layers leads to a few implications: First, the order in which messages
are processed is static and strict, not dynamically modifiable. When sending a message,
the order in which it is processed by the components is exactly the reverse of when the
message is being received. Furthermore, forcing the components to implement a common
interface and letting them only call the layer above and below using only methods defined
in this interface is a restriction. The interface for a layer must be expressive enough. These
restrictions might not be reasonably applicable to any protocol. Our implementation,
however, shows that we can implement CoAP in spite of these restrictions and benefit
from its simplicity.

4.2.3 Connector

A connector abstracts how the server sends and receives messages, i.e., the transport
protocol. A connector has no knowledge about the format of CoAP messages. Instead,
an endpoint passes encoded messages as opaque bit strings together with the destination
address and port to the connector to send it over the network. When a connector receives a
message in form of a bit string, it passes it to the endpoint together with the source address
and port. Typically, the connector uses the UDP protocol and sends and receives datagrams
over a socket. Other connectors might use Datagram Transport Layer Security (DTLS) ,
TCP or any other transport protocol. For example, we use some modified connectors

23



4 Design

in our JUnit tests to circumvent the OS and network and neglect undesirable delays by
forwarding a message from a client directly to the server.

A connector should not be confused with a socket. An endpoint does not query the
connector for receiving another message. Instead the connector calls its associated endpoint
and hands over new messages. Vice versa, an endpoint hands outgoing messages over to
the connector. The methods of the connector should be non-blocking and the connector
has its own concurrency-policy. Rich functionality can be implemented in a connector.
Scandium3, for example, is a DTLS implementation for secure communication between
endpoints.

4.3 Concurrency Model

One of the main goals of Cf is scalability over multiple cores of a machine. Therefore,
Cf’s architecture has to define which of its elements can be parallelized. A parallel element
defines its own concurrency model, e.g., whether it uses a single thread or a thread pool
to execute its code. An element could even implement an event-driven or multi-process
concurrency model but for our implementation, we have not found these models useful.
One encounters different conflicting factors when parallelizing the elements of a server.
Naively, the more elements run in parallel, the more can they exploit large numbers of
cores and achieve better performance. In practice this hardly holds true. In fact, the
information flow between two parallelized elements becomes much more costly. Making
a caller thread of a method also executing the logic behind that method is straight forward
in programming, i.e., a normal method call. Such method calls are synchronous by design
and easy to reason about. If the callee element is supposed to run concurrently to the caller
element though, and therefore the caller thread has to get a thread of the callee element
to process the logic behind the method, the effort for such a method call significantly
increases. First of all, a context switch is required before the callee thread can execute the
method’s logic. Second, the callee thread might run on another core than the caller thread
so that the memory of the method parameters is not in the cache of the core. Finally, to
pass parameters from one thread to another, one typically uses a shared queue to which
the caller writes and from which the callee reads and which causes further synchronization
overhead. As a result, the total amount of computation and latency per message increases
and the performance could decline. There are further issues such as the impact of a large
number of threads to the system, e.g., in terms of additional memory consumption. Finally,
more fine-grained parallelism leads to higher complexity, potential race conditions and
hampers maintainability.

One advantage of parallelization is that it allows protecting the system from failures
in elements that are not relevant to the whole system. Assume, for example, a resource
that spends five seconds’ time in a critical section to respond to requests. If the threads

3https://github.com/mkovatsc/Scandium, October 12, 2013
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that process requests for other resources also invoke the handler of this ‘slow’ resource,
they might all get stuck waiting to enter the critical section. In this case, a broken resource
breaks the whole system. We can solve this issue by modeling a ‘slow’ resource as
an independent element with its own thread. The threads that process requests in the
endpoint-stage no longer invoke the handler but pass the requests to the specified thread
of the resource. This makes the resource non-blocking and congesting requests will no
longer delay the threads of the remaining system.

As stated above, a parallel element defines its own concurrency model, e.g., the number
of threads it uses to execute the programming code. Using only a single thread for all
computations frees the element internally from concurrency issues such as race conditions.
Using a thread pool allows to run independent computations concurrently, e.g., processing
independent requests. The number of threads can be chosen at runtime and even adjusted
dynamically. Depending on the application, it might be advantageous to prioritize certain
elements, e.g., certain resources or endpoints, to find an optimal balance. The server
behavior becomes more flexible. Furthermore, we can optimize the server for a specific
platform it runs on, for instance depending on the number of cores it provides. On a
quad-core machine running Windows, we have measured that using four threads, we can
receive almost twice as many request per second through a UDP socket than if we use
only one thread. On a 16-core NUMA Red Hat Linux system, we found quite the opposite,
having a 40% lesser throughput using two threads instead of one.

Our concurrency design opts for finding the optimal tradeoff among these advantages
and disadvantages. The most coarse-grained design would be to use one single concurrency
model for the whole server. The most fine-grained design defines a separate concurrency
model per object, e.g., each CoAP component of an endpoint defines its own threads. We
believe the optimum to be between these extremes. We propose to let each connector,
each endpoint, and each resource choose its own concurrency model. That means, each
of our three defined stages has its own concurrency model, similar to SEDA. We have
chosen a stage-based model and subdivided the server into the aforementioned stages for
the following reasons.

Since our benchmarks have shown that on certain platforms one thread instead of
multiples can receive more packets per second through a socket, such a thread should be
burdened with as less different code as possible to achieve the best performance. Since a
connector defines its own concurrency model, the number of threads reading from and
writing to a socket can be configured independently from the rest of the server.

The main advantage for giving each endpoint its own concurrency model is that it
allows us to make them independent from the resource-stage. Resources that block threads
compromise the whole system, and therefore, giving the developer instruments to protect
endpoints from ‘slow’ resources is important. The endpoint consists of the processing
chain of the CoAP protocol. Each incoming or outgoing message is processed by one of
its components after another. Although it is possible to parallelize the components of an
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endpoint as well, it introduces too many context switches to be efficient. Each component
is relevant for the whole endpoint, and therefore the balancing argument does not apply.

Resources are imaginable in many flavors. A resource could be very simple in respond-
ing to requests but just as well wrap a complex procedure. In particular, some resources
might be able to process requests concurrently while others consist of critical sections.
Orthogonally, the potential effort to process a given request ranges from a few instructions
up to several seconds’ time of computation. Since each resource is able to define its own
concurrency model, i.e., thread pool, with an arbitrary number of threads that process
requests, the developer has high flexibility. If a resource does not define a thread pool, the
thread pool of its parent or transitively its ancestor will be used. If no resource on the path
to the root defines a thread pool, the same thread that has processed the CoAP protocol will
also process the code of the resource. In this case, there is no context switch for passing
the request to the thread pool which benefits performance. If the request processing code
of a resource contains critical sections, there are two simple ways how to guarantee mutual
exclusion. First, the developer can choose a resource with a single-threaded pool. As

Resources
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B2

A

A1

A2

Connector

Endpoint

Connector

Endpoint

Figure 4.3: Each Connector, endpoint and, resource (green) is able to define its own
concurrency model (represented by a rotating, red arrow). In this example,
requests to A, A1, and A2 will be all handled by A’s thread pool. Requests
to B1 and B2 will be handled by their respective thread pools. Requests to B
and the root will be handled by the thread from the endpoint that forwards the
request to the resource.
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a result, all requests for the resource will be processed by the one and only thread and
concurrency is not an issue in the first place. Second, the developer can simply add the
keyword ‘synchronized’ to the method declaration that processes requests or to the critical
section. Figure 4.3 gives an example of a server with two endpoints and a resource tree
where resources A, B1, and B2 define their own concurrency model. Requests to these
resources or their children will be processed by their respective thread pool.

The staged architecture can be seen as a combination of several architectures from
Chapter 3. Each stage can create its own thread pool which is what the MT model
postulates. Threads have to wait until a message comes through the queue, which makes it
event-driven as well. Therefore, expertise from these architectures also improves the staged
architecture. Since we use Java, any multi-process architecture would not be appropriate.
We also do not consider the PIPELINED architecture applicable for a CoAP servers. The
CoAP protocol processing chain has components that cannot simply be replicated; the
replicas had to communicate and synchronize their state, e.g., the component for duplicate
detection. Since an HTTP server benefits form TCP’s reliability guarantees, it is more
eligible for such an architecture. Typically, the OS provides a TCP implementation, and
therefore already solves the problem how to achieve these guarantees. CoAP, on the other
hand, has to do it in the application layer, which the server architecture has to account for.
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In the previous chapter, we have explained the three-stage architecture of Californium and
how we structure the CoAP processing chain as a stack of layers within an endpoint. In
this chapter, we give a more detailed discussion, how Californium implements these layers
and how they communicate with each other.

5.1 Messages

A CoAP message is a collection of values: message type, message identifier (MID),
message code, token, options, and payload. These values are defined in the CoAP
specification [42]. The MID is needed to match an acknowledgement to a message and the
token is needed to match a response to the origin request. It is impractical to keep messages
encoded in the binary format CoAP describes. Dealing with bit strings is cumbersome
and error prone. Since Cf is written in Java, we also opt for an object-oriented model
for messages. With an appropriate internal representation not only have we convenient
object-oriented methods to read and modify a message’s values but also benefit from
type-checking at compile time. High-level programming languages provide modeling
instruments such as subtyping and inheritance. We do not want to over-engineer our
class-model, though, and make only carful use of such instruments.

One of the most important values of a message is its message type: confirmable (CON),
non-confirmable (NON), acknowledgement (ACK) or reset (RST). The message code
defines whether a message carries a request, a response or is empty. Request codes are
further divided into GET, POST, PUT, and DELETE while response codes are divided
into the three classes Success, Client Error, and Server Error which again are divided into
multiple status codes. Depending on the type of the message and whether it carries a
request or response, different other properties can hold, e.g., we can only respond with
a status code 2.05 (Content) to a GET but no other requests. However, many properties
still hold for most messages. We believe it is worth only implementing the code for these
properties once in a class and let all messages use it either due to inheritance (for example
MID and token) or due to having an object representing them (for example options). Table
5.1 shows what message type can carry a request or response. Multiple reasonable division
strategies for messages are imaginable.
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CON NON ACK RST
Request Yes Yes No No
Response Yes Yes Yes No
Empty Yes1 No Yes Yes

Table 5.1: Not all message types and message codes can be legally combined.

No division: We might just use one class to represent them all. However, we feel this
design is too coarse. We believe that different classes can hint the developer to what
actions and properties belong to a message and ultimately improve the developer’s
understanding of Californium.

Division according to message type: This allows giving different methods to mes-
sages according to their message type. Confirmable messages would provide ac-
knowledge() and reject(), non-confirmables only reject() and empty messages neither.
However, most processing parts in CoAP depend more on whether a message carries
a request or a response than what message type it has. The most inconvenient
drawback of this division is that it requires a lot of confusing looking code for
checking what a message actually is. We believe that in general, the CoAP message
layer is of little interest to the application developer and prefer keeping it transparent
in our API.

Division according to message code: We believe that it is most natural for the devel-
oper to think in terms of requests and responses about CoAP and our goal is to hide
as much complexity as possible. We observe that a lot of code for the different mes-
sage types is unitary while code for requests, responses, and empty messages often
differ. Therefore, we propose to division all messages into three classes for requests,
responses, and empty messages. Values that belong to all messages independent of
their code (for example MID and token) are collected into a common superclass
Message as shown in Figure 5.1. Methods that depend only on the message type,
e.g., retransmission depends only whether it is CON but not whether it is a request
or response, can work with the common supertype Message so that no duplicate
code must be written.

We could even further division requests into one class per request code or the
responses into one class per response code. This, however, yields a large amount
of classes with little to no difference. Therefore, we consider this over-engineering
and decide against it.

1Can be used to trigger an RST from an endpoint to test if it is reachable

30



5.2 Exchange

Request Response Empty

Message

Figure 5.1: Message model: the classes for requests, responses, and empty messages have
a common superclass.

5.2 Exchange

We call the process of sending a request and receiving one or more corresponding responses
and empty messages an exchange. In its simplest case, an exchange consists only of one
request and response. If a request must be split up into multiple blocks each block belongs
to a single exchange stemming from the origin request. The same applies to all responses.
This section explains how the state of an exchange can become complicated and our
solution how Cf keeps track of messages and manages its state of exchanges. In CoAP,
The reasons for most complexity are the three following CoAP extensions that lead to
multiple responses.

a) A response is split up into multiple blocks due to its large size (block-12 [8]).
b) In case of an observe relation, we receive multiple notifications (observe-08 [21]).
c) In case of a multicast request, we receive responses from multiple endpoints

(groupcomm-16 [38]).

Reasons a) and b) can occur within the same exchange but should not at the same
time. Blockwise transferred notification should be transferred one after another. Reasons
a) and c) could but should not occur at the same time. Endpoints should not respond
with a blockwise transfer to a multicast request. The same is true for multicast requests
because they must be sent non-confirmable while a blockwise transfer requires confirmable
messages. Finally, reasons b) and c) can never occur at the same time. “If multiple subjects
are of interest to an observer, the observer must register separately for all of them” [21, p.
3].

The state of an exchange seen by a client and seen by the server is not always the same
but must be synchronized to eventually reach consensus. On first view, CoAP may seem
to be a protocol where always only one participant triggers a new action but this is not true.
A timeout at an endpoint, for instance, might cause it to resend a message, and therefore an
endpoint must expect to receive duplicate messages that belong to the same exchange and
only process one of them. A client application might just cancel a request in the middle of
sending it blockwise. An observed resource on a server might cancel a notification that is
being transferred blockwise and send a new one. A cancelation of a large message must
be propagated to its blocks and must be recognized by both endpoints so that both can
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clean up their state. As a result, the state of an exchange can be modified concurrently
due to numerous events. Endpoints must be able to deal with an arguably complex space
of possible states that an exchange might be in. If an endpoint uses only a single thread
to modify its state of a specific exchange the concurrently triggered events automatically
linearize and the program code becomes easier. In a multi-threaded environment, however,
judicious use of synchronization is required.

The implementation of OCf has shown one major flaw: the state the endpoint sees of an
exchange is distributed over all layers. Each layer has one or more hash maps that contain
mappings of tokens to the partial state of exchanges that the layer requires. The layer
for blockwise transfer, for instance, uses an inner class to hold the current status of the
blockwise transfer. Whenever a block arrives, the layer finds the corresponding blockwise
transfer status in its hash map and uses is for its next actions. Drawbacks of this approach
are

Difficult to clean up: When a program cancels a request, all layers must realize that
they have to remove the corresponding state they hold.

Memory usage: Each entry needs a very small amount of memory. Under heavy load
with many exchanges, the memory nevertheless becomes a problem and using more
hash maps than necessary is wasteful.

Efficiency: Finding a mapping of a token to its state is fast. However, doing it more
often than necessary is wasteful.

Scalability: A hash map that maps tokens to state is a source for synchronization
overhead when multiple threads write to it.

Atomicity: There exist concurrent hash maps that provide powerful APIs that can bundle
multiple operations to one atomic operation. However, multiple atomic operations
on different hash maps are not atomic. In case multiple threads operate on the hash
maps additional synchronization is required.

Note that the last two reasons were not really drawbacks for OCf because it was meant
as single-threaded system.

We propose to collect all state an endpoint knows of an exchange within a single object.
We call this object an Exchange (with capital E). Whenever a client intents to send a
request, it first creates an Exchange. When the request traverses downwards through the
CoAP stack, each layer updates the Exchange and forwards it to the lower layer. On the
other hand, when the request arrives at the server, it creates an Exchange to keep the state
and each CoAP layer forwards the Exchange upwards through the CoAP stack. After
the target resource has computed the response, it traverses downwards through the CoAP
stack of the server together with the Exchange. When the response arrives at the client,
the client finds its Exchange that was created for the request and forwards the response
plus Exchange upwards through its CoAP stack. Since each layer always receives not only
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a single message but also the Exchange with the state that corresponds to that message,
they do not need their own hash maps with mappings to the state they require. When an
Exchange has completed—be it successfully or not—we can remove the Exchange and all
state is automatically cleaned up.

5.3 Layer Interface

The layer interface defines the methods each layer must provide to its neighbor. The
interface of OCf defines two: send(Message) and receive(Message). Since a layer
should process both incoming and outgoing messages, it needs to know the direction of a
message, and therefore needs a method for sending and for receiving respectively. Both
methods expect an object of type Message as parameter. However, some layers process
requests differently from responses or empty messages. Since the type Message is the
superclass of the three, each such layer needs to test the parameter type with instanceof

and cast it to its actual type to proceed correctly. The underlying problem is that type
information gets lost when calling a method that expects an object of type Message but
actually passing it an object of a subtype. Many consider the usage of instanceof as a
hint for bad design and recommend “to only us it as a last resort.”2 We propose to split up
methods that process a message into multiple methods that each expects a parameter of a
subtype respectively. Furthermore, each layer expects the Exchange that belongs to the
specified message. This gives us a total amount of six methods:

send(Request, Exchange)

send(Response, Exchange)

send(EmptyMessage, Exchange)

receive(Request, Exchange)

receive(Response, Exchange)

receive(EmptyMessage, Exchange)

Note that we cannot omit a method for empty messages because some layers such as
for blockwise transfer or a future CoAP extension might depend on it.

It might look tempting to reduce the two parameters to only one. Say the method
send(Response, Exchange) only expects an Exchange and if necessary extracts the
response that is to be sent from that Exchange. Unfortunately, this does not work in a multi-
threaded environment (where multiple threads concurrently access the same Exchange).
The reasons are again the usual suspects: blockwise transfer, observe relations, and
multicasts. In the current draft for blockwise transfer (block-12 [8]), the first and second
blocks of a large response are sent at the same time. An observed resource might send

2http://www.javapractices.com/topic/TopicAction.do?Id=31, June 07, 2013
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multiple notifications in a short time interval. Multiple endpoints might respond to a
multicast request. As a result, multiple responses to the same request and ultimately the
same Exchange might arrive at the client. In our multi-threaded system, multiple threads
can process the responses and modify the Exchange concurrently. Each thread must know
which response it is supposed to process. If the method receive(Response, Exchange)

only expected an Exchange, a thread would have no way of knowing which response it is
supposed to process even if they were all somehow stored in the Exchange. One possible
solution is to somehow map a thread id to the response it is supposed to process but this is
just another source for synchronization overhead and an arguably ugly way to do it. We
find it more natural and reasonable to add the message and the Exchange to the expected
parameters.

5.4 Synchronization

An endpoint must be prepared to receive the same message multiple times. Two messages
are equal, if their sources, destinations, and MIDs are the same within the same lifetime. An
endpoint has to remember confirmable messages for a EXCHANGE LIFETIME (247 seconds)
and non-confirmable messages for an NON LIFETIME (147 seconds). If a message arrives
a second time, the server has to respond with the exact same ACK, RST or response as
before without executing the request a second time (at-most-once semantic). Therefore, a
duplicate must be identified as such. It is essential that duplicate detection be an atomic
operation so that the server can guarantee that it only processes one of two simultaneously
arriving twin messages. Californium stores all exchanges in a ConcurrentHashMap,
which is a powerful, highly optimized data structure that supports concurrents concurrency.
We use the method putIfAbsent() to atomically check whether a message is already
present and insert it into the map if not. The message source and MID give a good hash
key and allow many threads to concurrently access the hash map without causing too much
synchronization overhead. Periodically, a thread iterates through all entries and checks
their age. If the lifetime of a message has expired, the deduplicator removes it from the
hash map. This mechanism proved to be far superior to scheduling a task on a timer that
removes a message from the hash map after its lifetime. Under a load of thousands of
messages per second, the overhead for scheduling all the tasks grows too high.

Due to the deduplication mechanism the layers process each message only once. Besides
duplicates, an endpoint has to be prepared for acknowledgements and separate responses
that might arrive simultaneously and for multiple responses due to the reasons described in
section 5.2. Fortunately, it is possible to implement them with negligible synchronization.
However, the current draft for blockwise transfer (block-12 [8]) makes the server, in case
of a POST request, send the first and second blocks of a large response at the same time. 3

Both blocks might arrive at the same time at the client which processes them concurrently.

3A change in this regard is currently in discussion.
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Up to that point, the client does not yet know that the response will be sent blockwise. It is
crucial that exactly one of the arriving blocks—be it the first or the second block—sets up
the required state for blockwise transfer. Setting up this state is a critical section and if both
processing threads entered it at the same time, they would nondeterministically interfere
and potentially mess up the blockwise transfer state. Such a race condition can only be
solved with synchronization within the blockwise layer. Fortunately, this synchronization
is only required if a message carries a block option, and has therefore no influence at all to
messages that are not sent blockwise.

When a client has established an observe relation with a resource, the resource sends
a notification (response with observe option) whenever its state changes. Since UDP is
unreliable, a server has to add a sequence number carried in an observe option to each
notification. A higher sequence-number indicates that the notification is newer than a
notification with a lower number and a client must drop obsolete notifications. Care
must be taken when multiple threads issue sequence-numbers on the server side or decide
whether or not to drop a notification on the client side. Assume a resource wants to
send two notifications within a short time and two (endpoint-stage) threads process one
notification each. Without further information, it is not possible for the two threads to know
which notification was produced first by the resource. Even if they use an atomic counter
and assign different sequence-numbers to the notification they process, they might have
mixed up the order. Therefore, it is essential that the resource itself sets the observe-option
and only then forwards them to a next thread. On the client side, multiple notifications
might arrive at the same time and be processed by two different threads. At some point,
each thread has to decide, whether its notification is new or obsolete. Assume the first
thread realizes that its notification is new and shortly afterwards, the second realizes
that its notification is even newer. Due to the nondeterministic scheduling behavior, the
second thread forwards its notification first and executes the code that updates some state.
Nonetheless, the first thread has already decided that its notification is not obsolete and
now also invokes the code that updates the state but with the wrong value. Therefore, the
update-code that reacts to notifications must be a (synchronized) critical section and do
the check for sequence-numbers within that section.

5.5 Separate Stacks

We considered vertically dividing the stack to have separate stacks for different responsi-
bilities. As a result, we could independently configure the two stacks, add different layers
to them, or assign more threads to one stack than the other.

Server and client stack: The client stack sends requests and receives responses and the
server stack receives requests and sends responses. A client-only application could
even omit its server stack and vice versa. However, we would have a problem, split-
ting up the conceptual components (layers) of CoAP. For instance, non-confirmable
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requests and responses share the set of MIDs . Therefore, the component for send-
ing requests and the component for sending responses must be able to exchange
information and to synchronize how they distribute the available MIDs . Therefore,
client stack and server stack have to exchange information.

Request and response stack: The stack for receiving and sending requests could be
separated from the stack for responses. However, we have the same problem with
the available MIDs from above. Furthermore, we only know whether we receive
a request, response or empty message, when we actually decode the received bit
string to its internal representation and can only then multiplex over the different
stacks. It is also not clear, where to process empty messages.

Receiver and sender stack: The stack for sending requests and responses could be
separated from the stack for receiving them. This would also split up conceptual
components such as matching. When the sender stack sends a request, it has to pass
the token to the receiver stack so that it recognizes the response later. Furthermore,
multiple components (responsible for matching, reliability or blockwise transfer)
need to send messages when receiving one. Thus, the send and receive stack need
to be tightly coupled anyway.

In general, splitting up the stack requires the definition of two interfaces instead of one
and ultimately leads to more complexity for negligible advantages. Therefore, we decided
to not split up the stack in any way.
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One goal of Californium is to host services that communicate with other endpoints. In
the IoT, we expect endpoints to exchange small messages. We consider each request and
response a single unit of information. For the endpoints that communicate with a server,
the relevant factors are the number of information that can be exchanged per time and the
latency. Whether it is a CoAP or an HTTP message that carries the information from one
endpoint to another is of no importance for the application. We measure the throughput
of a server as the average number of requests that it is able to handle per second. This
chapter presents the results of our experiments with Californium, Old Californium, and
five state-of-the-art HTTP servers. Therefore this evaluation also serves as a comparison
between CoAP and HTTP as protocols in the service backend. We particularly evaluate
the scalability of the seven servers with respect to the number of available cores and with
respect to the number of endpoints that concurrently communicate with the server. A node
In the World Wide Web usually is either in the role of a server or a client. Therefore,
HTTP servers truly are servers only and are optimized for that purpose. For the sake of
comparison, we concentrate our evaluation of Californium and Old Californium only on
their role as server even though both can appear as clients as well.

We distinguish between two use-cases in which a server reaches its maximum perfor-
mance. First, there might be a few clients that send many requests to the server. Such
a client might be a proxy, for example, that in fact forwards requests from many clients
but represents itself to the server as one highly demanding client. If server and clients
used HTTP, they could keep a TCP connection alive and exchange many messages over
it. In the second case, there are a large number of clients, each sending only a single
request to the server. For an HTTP server, this means that each client establishes a new
TCP connection only to exchange one request and immediately terminate it again. This
is the scenario for a resource directory (RD). An RD can be thought of as an address
book for resources. A endpoint can for instance register its resources of a specific type at
the RD and another endpoint that looks for such a resource might later retrieve its URI
form the RD. To simulate this scenario, HTTP clients do not keep their TCP connections
alive but reestablish it for each request. The distinction between these two use-cases is
much more prominent for HTTP than for CoAP as there is no such thing as establishing a
connection in CoAP and it makes no difference whether requests come from the same or
many different clients.
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6.1 Experimental Environment

The experimental environment consists of three client machines and a single server. The
server is a Lenovo ThinkPad W530 with an Intel Core i7-3720QM (Quad-Core, 2.6 GHz),
24 GB of RAM and an Intel 82579 LM Gigabit network card. We use a 64-bit Windows 7
and Java 1.7.0 09 with Java HotSpot™ 64-bit Server VM and allocate 4 GB of RAM for
the Java Virtual Machine (JVM) . We disable hyper-threading. The server is connected to
the client machines over Gigabit Ethernet. Figure 6.1 illustrates the setup in detail.
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Figure 6.1: The quad-core server is connected to three client machines over Gigabit Ether-
net. Each client runs a slave instance of CoAPBench and simulates multiple
virtual clients that all bind to a port and send requests to the server. The master
sends a signal to the slaves to start the benchmark.

We use ApacheBench1 to measure the performance of HTTP servers. ApacheBench
creates a configurable number (called “concurrency level”) of virtual clients. Each client
sends requests to the server as fast as it can handle them, i.e., it always waits for a response
before sending another request. We further can decide, whether virtual clients are allowed
keeping their connection alive or not. Unfortunately, there is no such benchmark tool
publicly available for CoAP. Therefore, we developed CoAPBench, a benchmark tool
for CoAP servers. As it turns out for both tools, running only on one machine may not
be enough to fully saturate the capacity of the server. Therefore, CoAPBench can be
distributed over multiple machines. A centralized master is connected over TCP to one
slave-instance of CoAPBench per physical machine. The master simultaneously sends a
starting signal to all slaves, containing the number of virtual clients that are supposed to
concurrently send requests. Each virtual client sends requests for 60 seconds and counts
the responses. The sum of responses of all virtual clients divided by the time period of
60 seconds gives the average throughput that the server is able to achieve. It is possible
that a UDP packet goes lost and a virtual client does not receive a response. After 10
seconds with no response, a virtual client considers the request as failed and sends a

1 http://httpd.apache.org/docs/2.2/programs/ab.html August 22, 2013
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new one. In most measurements, no timeouts occurred and if, then the number was far
below a thousandth of the amount of successful exchanges. CoAPBench is extensible with
third-party software, which allowed us to also run multiple instances of ApacheBench on
multiple machines.

6.2 Californium vs. Old Californium

We have built two simple, equivalent servers with both versions of the CoAP frameworks.
The servers listen on port 5683 and have a simple resource at the top of the resource tree
that responds to GET requests with the payload “hello world”. All GET requests are
confirmable and the responses piggy-backed ACKs. The simplicity of the benchmark
resource reduces the effort both servers must carry out to a minimum so that we can
compare the bare protocol processing of the two frameworks. Since the server has to
remember all requests that it has received to detect duplicates, the memory consumption
becomes very high under the load we achieve. CoAP allows to relax duplicate detection
for idempotent requests such as GET requests. Since the 24 GB RAM of our server
machine is not enough memory, we have disabled duplicate detection. We have configured
Cf to use 4 threads in the connector-stage for sending, 4 threads in the connector-stage for
receiving, 4 threads in the endpoint-stage for executing the protocol and the benchmark
resource does not create its own thread-pool, and therefore the endpoint-stage threads
also execute the code in the resource-stage. The most recent OCf version uses a single
thread for receiving requests and a thread-pool with 10 threads for executing the code in
resources and then sending the response.

We measure the servers with different numbers of virtual clients. We start with a concur-
rency level of 10 and increase it exponentially up to 10,000. To investigate scalability of
the servers in the presence of multiple cores, we bind them alternately to 1, 2, 3, or 4 cores.
Figure 6.2 a) and b) show the average number of requests that the Cf and OCf servers are
able to process per second. When we reach 150 concurrent virtual clients, the performance
curve of both Cf and OCf stabilizes. The results of Cf with 1 or 2 cores are slightly better
than those of OCf. The performance of OCf is bound by the performance of the single
receiver thread which has to copy the packets from the socket and move them upwards
through the stack until it can pass them to the thread-pool. This explains why OCf does
not achieve the performance of Cf where multiple threads constantly work on receiving
requests and others process the message in the endpoint. With 3 or 4 cores, Cf clearly
outperforms OCf. Cf performs 3.5 times better on 4 cores than on 1 core. Real-world
resources certainly need to do more work than our dummy resource for the benchmark.
If these resources do not introduce synchronization, Cf is expected to scale even better
as the fraction of concurrent computation (CoAP protocol + computation in resource)
grows compared to bottlenecks such as synchronization between stages, the resource tree
or hardware such as the network card.
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The latency was always very low. Up to 1000 concurrent clients, more than 99% of
all requests were responded within less than one millisecond. With more clients, the
latency linearly increased up to 10 milliseconds which is still very low, considering the
high concurrency level.
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Figure 6.2: Californium achieves a maximum throughput of 140,000 requests per second.
Four cores are about 3.5 times better than one core. Old Californium achieves
a comparable throughput with one and two cores but scales bad for three and
four cores.

6.3 HTTP Servers

There exist numerous HTTP servers that we could compare Californium with. Since
Californium is designed to host services that compute the content of a response dynam-
ically, we have ruled out HTTP servers that only serve static content (files). We have
finally chosen five servers according to their prevalence in the industry and novelty in
architectural design.

Vert.x (version 1.3.1) is a novel event-driven HTTP server that describes itself as “a
lightweight, high performance application platform for the JVM [. . . ].”2 A server
exports its content within so called Verticles, which are independent from each other
as each runs in its own ‘virtual’ JVM . Vert.x’s strength is the ability to seamlessly
integrate application logic written in one of several supported languages wrapped
in a Verticle. Although Vert.x’s backbone uses multiple threads, each Verticle
experiences a strictly single-threaded event-driven environment. This makes it hard
for a service wrapped in a single Verticle to be scalable. Instead, one can start
Vert.x with a parameter that configures how many parallel instances of a specific

2Vert.x: http://vertx.io, October 10, 2013
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Verticle will be created. However, these instances can only exchange information
with each other over Vert.x’s event-bus—they do not even share static variables. The
consequence for a real-world application is a significant overhead in programming
code and computation to synchronize Verticle instances. This is less of a problem
for our benchmark since the server is only supposed to respond with a small payload
as described for the Cf server. Therefore, we always configure Vert.x to create 4
instances so that it is able to fully exploit the four cores of the machine.

Apache Tomcat (version 7.0.34) is the most prevalent Web server for Java Servlets.3

Tomcat is open source, written in Java and has been first released in 1999. It
implements a multi-threaded architecture where one thread is started per TCP
connection. For our benchmarks, we have disabled Tomcat’s logging, set the thread
limit to 10,000 and start it with 4 GB RAM.

Apache HTTP Server (version 2.4.4) “has been the most popular Web server on the
Internet since April 1996, [. . . ].”4 Apache HTTP server has traditionally been paired
with PHP (version 5.5.1) to serve dynamic content. By default, the server uses
a multi-threaded architecture on Windows. We have disabled all logs and set the
thread limit to 10,000.

Project Grizzly (version 2.3.6) builds upon Java’s New I/O (NIO) package. Grizzly has
been developed by Sun Microsystems and Oracle and is used as servlet container in
Glassfish, a server for Java EE. 5 Behind the event-driven network I/O, the server
uses a multi-threaded architecture.6

Node.js (version 0.10.20) is an event-driven Web server. 7 Node.js is written in C++
and utilizes Google’s V8 JavaScript engine. JavaScript network applications can
be deployed on the server and are independent from each other. Node.js executes
JavaScript code with only a single thread. It is possible to deploy an application
multiple times like in Vert.x with a so called “cluster”, however, this mechanism is
still experimental and we have omitted it.

In the following, we present the results for all HTTP servers. For all following figures,
we show HTTP’s results when clients keep connections alive on the left side and the
results when they do not on the right side. We use the same scale for all figures in this
section as for the results of Californium. Figure 6.3 shows the results for Vert.x. When
Vert.x keeps connections alive, it achieves a throughput almost as high as Californium
and peaks at a concurrency level of 70 with a throughput of 117,000 requests per second
(85% of Californium). With more than 1000 concurrent clients, Vert.x’s performance

3Apache Tomcat: http://tomcat.apache.org, October 10, 2013
4Apache HTTP server: http://httpd.apache.org, October 10, 2013
5https://glassfish.java.net/de/, October 12, 2013
6http://jfarcand.wordpress.com/2006/01/26/grizzly-nio-architecture-part-ii-2, Oc-

tober 10, 2013
7Node.js: http://nodejs.org, October 10, 2013
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a) Vert.x with keep-alive
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b) Vert.x without keep-alive

Figure 6.3: When keeping connections alive, Vert.x peaks at a concurrency level of 70
with a throughput of 117,000 requests per second. In contrast, Vert.x performs
poorly (max. 9100) without the keep-alive mechanism.

slowly decreases. The highest values for four cores are around 4 times better than for one
core, showing that Vert.x scales very well. In contrast, Vert.x performs poorly without the
keep-alive mechanism. More than two cores do not help much and for a concurrency level
of 60 or more, the throughput drops below 2500 requests per second. In fact, we are going
to observe such a sudden drop in throughput in all HTTP servers when they do not keep
connections alive.
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a) Tomcat with keep-alive
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b) Tomcat without keep-alive

Figure 6.4: Tomcat achieves maximum 70% of Cf’s throughput when keeping connections
alive (max. 94,000) and about a tenth otherwise (13,400).

Figure 6.4 shows the throughput of Apache Tomcat. When keeping connections alive,
Tomcat at its best is able to handle 94,000 requests per second (70% of Californium). Four
cores are about three times as fast as one core and the CPU utilization always reaches
100%. Tomcat peaks at a concurrency level of 30 and slowly decreases with a higher
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6.3 HTTP Servers

concurrency level. With more than 200 clients, Tomcat’s throughput drastically drops.
When not keeping connections alive, Tomcat peaks at 70 with around 13,400 requests per
second. Interestingly, Tomcat’s throughput with one and four cores drops at a specific
point, while its throughput with two and three cores is very stable. Tomcat achieves the
highest throughput among all HTTP servers without keep-alive. The CPU utilization with
four cores fluctuates between 25% and 40%. It is possible that a major bottleneck in this
case is the network card or the way Windows manages network I/O.

Figure 6.5 shows the results for Apache HTTP Server with PHP. Apache achieves
rather low throughput even though the CPU is always fully utilized. We assume that the
mechanism how Apache invokes the PHP code must be computationally intensive, even
though the code consists only of a simple statement: echo 'hello world';. Apache
scales well: four cores are 3.3 times better than one core. With keep-alive, we have about
3500 requests per second on one core, 6700 on two cores, 8800 on three cores and 11,800
on four cores. Without keep-alive, the results are a little lower with 2400 for one core,
2800 for two cores, 7100 on three cores and 9200 on four cores. Apache’s throughput
is very stable on its low level but the server struggles with more than 5000 concurrent
clients. Surprisingly, Apache performs worse with keep-alive at this point than without.
We assume the reason for this is that the number of clients at this point is larger than
Apache’s throughput and the effort to manage so many ‘living’ connections becomes
heavier than just reestablishing them.

10 100 1000 10^4
0 k

20 k

40 k

60 k

80 k

100 k

120 k

140 k

Number of concurrent clients

R
eq

ue
st

s 
pe

r 
se

c

a) Apache + PHP with keep-alive
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b) Apache + PHP without keep-alive

Figure 6.5: Apache plus PHP does not achieve a very high throughput with (max. 13,100)
and without (max. 10,000) the keep-alive mechanism. Apache always utilizes
the CPU to its fullest and scales well.

Grizzly achieves an admissible throughput of 76,000 and keeps it up to a concurrency
level of 2000 as shown in Figure 6.6. Grizzly’s scalability is exceptional; it scales better
than it should. Grizzly’s throughput with four cores is around 2.2 times higher than with
two cores and even 6 times higher than with one core. There is no obvious explanation
for this behavior. In contrast, Grizzly does not scale as well without keep-alive. More
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than two cores do not improve the throughput of the server. When using one, three or four
cores, the throughput with more than 300 concurrent clients even drops below 1000. With
a high concurrency level, two cores show the best performance.
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a) Grizzly with keep-alive
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b) Grizzly without keep-alive

Figure 6.6: With keep-alive, Grizzly achieves an admissable throughput of 76,000 even
for more than 1000 concurrent clients. Interestingly, it performs 6 times better
with four cores than with one core. Without keep-alive, Grizzly’s throughput
(max. 9100) drops at 300 clients, except when running on two cores.

Node.js achieves the lowest throughput of all servers with and without keep-alive. In
both cases, a sudden drop appears between a concurrency level of 200 and 300. Since
Node.js uses only a single thread for JavaScript code, it has no chance against the other
servers. Node.js’s internal use of more than one threads explains why it scales at least a
little.
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a) Node.js with keep-alive
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b) Node.js without keep-alive

Figure 6.7: Node.js achieves the lowest throughput of all servers (max. 7200 and 6200).
Since it internally uses more than one core, it scales at least a little.
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6.4 Performance on a Many-Core System

6.4 Performance on a Many-Core System

We evaluate Californium and Old Californium on a many-core Non-Uniform Memory
Access (NUMA) system and compare them to the two HTTP servers which have achieved
the highest troughput on the quad-core: the event-driven Vert.x and the multi-threaded
Apache Tomcat. The system consists of two AMD Opteron(TM) Processor 6212 each
having two nodes each having four cores (16 cores in total). A core runs at a frequency
of 1.4 GHz and has a cache of 2048 KB. A node with four cores has 32 GB of RAM.
The OS is a Red Hat Enterprise Linux Workstation release 6.4 (Santiago) with kernel
version 2.6.32-358.14.1.el6.x86 64. Figure 6.8 shows the NUMA setup. We use the same
Java version as for the quad-core. We have two such systems, one runs the server and
another emulates the clients. They are connected over 10 Gigabit Ethernet. We run each
server on 16, 8, 4, 2, and 1 core and measure its average throughput with an increasing
concurrency level from 10 to 1000 (in steps of 10 up to 200 and then in steps of 25 up
to 500 and then in steps of 100 up to 1000). Each measurement takes again 60 seconds.
We always deploy as many instances in Vert.x as there are cores. Californium uses one
thread for receiving requests and one thread for sending responses in the connector-stage
and as many threads in the endpoint-stage as cores are available. We always run the JVM
with 4 GB RAM and use the flag -XX:+UseNUMA to turn on Java’s NUMA-aware memory
allocator in conjunction with the Parallel Scavenger garbage collector.
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Figure 6.8: A client and server NUMA machine, both having 4 nodes with 4 cores each.
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(a) Californium (max. 101,000)
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(b) Old Californium (max. 36,000)
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(c) Vert.x with keep-alive (max. 88,000)
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(d) Vert.x without keep-alive (max. 26,000)
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(e) Tomcat with keep-alive (max. 59,000)
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(f) Tomcat without keep-alive (max. 26,000)

Figure 6.9: The results for Californium, Old Californium, Vert.x and Tomcat on the 16-
core NUMA system. Californium perfoms best, followed by Vert.x with
keep-alive.
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6.5 Discussion

Figure 6.9 shows the throughput for all servers on the NUMA system. We have
ordered the legends of each figure according to the average throughput a line represents.
Interestingly, no server performs significantly better when having 16 cores but typically
even worse. Californium (a) once again achieves the highest throughput with about
100,000. However, 8 and 16 cores perform worse. Old Californium (b) cannot even benefit
from more than two cores but is very stable slightly below 40,000 requests per second.
Vert.x with keep-alive (c) is a close second and achieves with 4, 8 an 16 instances on
an equal number of cores the same throughput as Cf with 16 cores. There is one outlier
at a concurrency level of 600 that we cannot explain. Unfortunately, we no longer had
access to the NUMA system to double-check this outlier, when we found it. Interestingly
enough, Vert.x’s performance without keep-alive (d) is an order of magnitude better on
the 16-core than on the quad-core. The curve peaks with 25,000 and behaves very smooth.
Vert.x may be better compatible with the network card of the NUMA system or the socket
support of the OS. Tomcat with keep-alive (e) cannot keep up with Cf and Vert.x when the
concurrency level surpasses 200. The curve of Tomcat’s throughput stepwise decreases
towards a higher concurrency level. Without keep-alive, Tomcat (f) is on the same level
as Vert.x except when running on only one core. With 400 or more concurrent clients,
ApacheBench often is not able to establish the required amount of TCP connections and
aborts the measurement prematurely. This was not the case for Tomcat on the quad-core,
and therefore might be a problem of the OS socket implementation Tomcat depends on.

6.5 Discussion

We have evaluated the performance of five HTTP servers. Apache HTTP Server and
Apache Tomcat represent the fraction of multi-threaded servers, while Vert.x and Node.js
are event-driven, and Grizzly is a hybrid. Figure 6.10 summarizes the results from all
servers on the quad-core when all four cores are available. Just from the results, it is not
possible to choose a clear winner among the architectures. Vert.x and Tomcat both reach a
high throughput, Node.js and Apache HTTP Server both do not, and the hybrid Grizzly
is somewhere in the middle. Vert.x, which scales best towards many concurrent clients,
achieves its scalability by replicating the benchmark Verticle, which is hard to compare
with. If the Verticle kept a changing state, the replicas would have to synchronize.

Californium and Old Californium both scale better with respect to a growing number
of clients. On both machines, we observe that the throughput stays high even for very
high concurrency levels. Since CoAP is based on UDP, there are no connections and the
server does not need to keep any state or even threads for a specific client. It does not
matter, whether requests stem from the same source or not. With a higher concurrency
level, only the latency per request increases. If we increased the concurrency level even
more, the buffer of the switch or the network card of the server machine eventually would
overflow and would have to drop packets. The number of timeouts would start to grow but
the throughput would remain the same. In contrast, even though HTTP in principle is a
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a) Quad-core with keep-alive
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b) Quad-core without keep-alive

Figure 6.10: Summary of all servers on the quad-core with and without keep-alive. Cali-
fornium’s throughput is clearly the highest. In the use-case of a resource direc-
tory where thousands of nodes send only one request at once, the throughput
with CoAP is tenfold as high as with HTTP.

RESTful protocol, TCP is not and the server has to hold and maintain the state that comes
with each connection—collapsing at some point.

It is debatable whether CoAP should be rather compared to HTTP with keeping connec-
tions alive or without. In the use-case of the proxy and few other nodes that each sends
many requests, it seems fair to compare CoAP to HTTP with the keep-alive mechanism
enabled. Californium then performs about 15% better than the best HTTP server. In the
use-case of the RD, however, nodes cannot benefit from keeping connections established.
Consequently, our results suggest that the throughput with CoAP is tenfold as high as with
HTTP without keep-alive.

While most servers scale very well on the quad-core, none is able to utilize more than
four cores on the NUMA system. 16 cores have so much computing power that the socket
becomes the bottleneck. The receive and send methods of the datagram socket both are
synchronized, which limits the performance of the socket. Generally, the best performance
comes with four cores, i.e., exactly one node whose cores share the local memory. On a
NUMA system, the memory access time depends on its location. When using more than
four cores, memory inevitably needs to travel from one node to another which slows down
the system. Further phenomena like false sharing may be part of the problem as well. The
JVM distributes the threads autonomously over the available cores giving us no possibility
to assign a specific thread to a specific core with pure Java tools. The JVM ’s abstraction
hinders us from potentially optimizing Californium for NUMA systems. In all our tests,
we never managed to utilize more than 20% of the total computing capacity. It is clear
that a real-world application would do more work than just send a dummy payload as in
our benchmark. If the services that were to be hosted on Cf required a lot of computation,
it might be worth running it on a many-core machine.
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6.5 Discussion

On the 16-core NUMA , we have measured, whether we can achieve a higher throughput,
if Californium listens on more than one port. Indeed, the combined throughput of multiple
sockets on different ports can be twice as high as with one socket. However, we believe
that is of no use for the majority of real-world applications, and therefore have limited our
benchmarks to servers listening on one port. We have further compared the throughput
that a normal (blocking) datagram socket achieves with the one of a NIO socket. On both
machines, the quad-core and the 16-core NUMA system, the blocking datagram socket
performed twice as fast as the NIO socket. We found on the quad-core with Windows,
however, that we can double the throughput of a blocking socket by using four threads to
receive messages. On the other hand, the throughput of a socket on the Red Hat 16-core
NUMA drops about 60% when two threads instead of one invoke the receive-method.
Luckily, Californium allows us to freely configure the number of threads in the connector.
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7 Optimization

First benchmarks suggested that Cf should be able to process about 100,000 requests per
second. In these benchmarks, clients and server ran on the same machine. When we
moved the clients to different physical machines, we expected the performance to increase
even further or at least remain the same. First results showed a disappointing throughput
of 60,000 requests per second with a CPU utilization of only 60% and bad scalability
for 3 and 4 cores. We located the bottleneck somewhere between the network card and
the JVM. The method call that copies an incoming packet into Cf’s memory is rather
time expensive. As in OCf, the methods for sending and receiving UDP packets take a
significant fraction of the total computation time. This is not the case when the client and
server are executed on the same machine. The operating system seems to be able to transfer
UDP packets much faster from process to process than from the network card to a process.
It is imaginable that a designated server machine is equipped with a much faster network
card and more efficient network I/O than our commodity notebook so that this problem is
not apparent in the first place. We found a solution to the problem by designating more
than one thread to receiving packets from the datagram socket. This is surprising because
the receive-method of the socket is synchronized. The method for copying the bytes from
the packet into a byte array, however, is not. With four receiver-threads, we now achieve
the expected throughput of 140,000 requests per second (as described in Chapter 6) and are
able to fully utilize all four cores of the CPU. Since Cf wraps the transport protocol within
a connector that has its own multi-threading strategy, changing the number of threads in a
connector is perfectly allowed.

When Californium runs under heavy load, it constantly allocates and frees up a signifi-
cant amount of memory. In Java, the garbage collector (GC) is in charge of finding obsolete
objects and reclaim their memory. An object is obsolete if it is no longer reachable over
references from the program call stack. Periodically, the GC must be invoked and clean
up the memory, which is called a GC-iteration. The majority of objects that GC cleans
up are young objects. Therefore, Java manages its memory in ‘generations.’1 When a
program constructs a new object, the object is usually placed in the ‘young’ generation and
only after it has survived multiple iterations, the GC is going to move it into the ‘tenured’
generation. GC is more efficient, when it cleans the young generation more often than the
tenured generation.

1http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html, August 14,
2013
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7 Optimization

In particular in a concurrent software, finding unreachable objects is difficult because
race conditions must be avoided. Java comes with several garbage collectors that imple-
ment different strategies. The most important factor for choosing the correct strategy is
how long it has to suspend threads. This depends on the total size of the memory, the sizes
of the generations, the amount of work that GC can do in parallel, memory access time,
and of course the strategy itself. Choosing the correct GC can drastically improve the
performance of a memory-intensive software. Most JVMs even choose a GC at runtime
based on the machine they are running on. On the quad-core, we achieved the best results
with the default, serial GC. Under heavy load, the Windows Task Manager reported the
CPU utilization as shown in Figure 7.1. The red line indicates the fraction of time spent in
kernel space and the green line the total utilization of each core.

Figure 7.1: CPU utilization with the serial garbage collector on the quad-core. From left
to right the utilization of core 0, 1, 2 and 3 are shown. The red line depicts the
fraction of time spent in kernel space and the green line the total utilization of
a core.

The 16-core NUMA system has a much different hardware layout. On a NUMA
machine, Java can benefit from a NUMA-aware memory allocation algorithm and GC. We
can explicitly enable both with the JVM parameter -XX:+UseNUMA. As a result, the JVM
uses the Parallel Scavenger garbage collector, which we can also explicitly turn on with
the parameter -XX:+UseParallelGC.2 We have observed that the CPU utilization on the
quad-core with the parallel GC looks much different from the serial GC.

We compare Cf with 3 GB of memory to Cf with 12 GB of memory. Figure 7.2 shows
the CPU utilization of Cf over 60 seconds with 3 and 12 GB of memory. Whenever the
kernel time (red line) drops, a GC iteration was performed. The overall throughput in
terms of processed requests per second is roughly the same in both setups. However, from
the perspective of the clients, the server behaves differently. When Cf has a larger memory
space, the server can longer process requests before the next GC iteration is required. A
single iteration takes more time, though. At some point, GC needs to suspend all Java
Threads to have exclusive access to the memory. This suspension directly reflects in higher

2http://docs.oracle.com/javase/7/docs/technotes/guides/vm/

performance-enhancements-7.html, August 14, 2013
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a) CPU utilization when the parallel garbage collector has to manage 3 GB of memory

b) CPU utilization when the parallel garbage collector has to manage 12 GB of memory

Figure 7.2: The more memory a server has, the less often garbage collection is required
but the more time each iteration takes. This increases the latency a client
sometimes experiences.

latency for request currently in Cf’s pipeline. A GC iteration over 12 GB of memory
takes about 3.5 seconds on our system. As a result, increasing Cf’s memory increases the
potential for timeouts on the client side. Fortunately, there are several JVM parameters
that allow tuning the GC behavior of the JVM. In particular, one can chose an algorithm
that operates more concurrently to other threads, thus, reducing the time threads must be
suspended (-XX:+UseParallelGC or -XX:+UseConcMarkSweepGC). Some parameters
(-XX:MaxGCPauseMillis=<N> and -XX:GCTimeRatio=<N>) allow to further control the
suspension time of threads if the latency is a concern.

Figure 7.3: Cf bound to cores 2 and 3: both cores spend the same time in kernel space.
We assume that Windows internally strictly uses core 0 for computations for
network I/O.

53



7 Optimization

An interesting fact is that the average fraction of kernel space computation is in all
figures larger on core 0 than on the others. When we bind Cf to only core 2 and 3, we
see a CPU utilization as shown in Figure 7.3. We see that both cores 2 and 3 spend
the same amount of computation in kernel space. Interestingly, we see some activity on
core 0 and it is all in kernel space (the red line is shadowed by the equally shaped green
line). Needless to say, no other process was responsible for this activity. We assume that
Windows internally strictly uses core 0 for computations for network I/O. We did not
observe this phenomenon on the NUMA system with Red Hat.
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8 Application Programming
Interface

Californium’s ultimate goal is to allow developers creating services that communicate over
the CoAP protocol. This can be thought of as a two-layer application where Cf forms the
bottom and the service logic builds on top of it. Californium’s application programming
interface (API) specifies how the service can interact with Cf, i.e., send and receive CoAP
messages and export content in form of CoAP resources. The definition of the term API
is somewhat fuzzy. In case of Cf, the API consists of several classes with public methods
which the developer is encouraged to use. Quality aspects such as usability and learnability
mostly depend on a good API and directly affect how easy a developer can familiarize
himself with Cf.

There exist two books written by experts—“Effective Java” by J. Bloch [6] and “Frame-
work Design Guidelines” by K. Cwalina (Microsoft) [15]—that give guidelines for API
design and outline tradeoffs of different design decisions. These guidelines are not about
decisions among design patterns but rather general advice, e.g., preferring interfaces to
abstract classes or as preferring lists to arrays. Additionally, Stylos at al. have published
several research papers [16, 43–45] about API design. Stylos et al. identify two groups of
stakeholders of an API : designers and users. Our focus lies on the needs for the group of
users which we call the developers (They develop the application that uses Cf’s API ). De-
velopers expect powerful features and want to quickly write efficient, error-free programs.
Stylos suggests making multiple sets of APIs , for instance one for novice developers and
another for experts. We have adopted this proposal and provide not only the same classes
that Cf internally uses to experts who ask for powerful features (remember that CoAP is
not final yet but might still be extended) but also have designed a novice-friendly API .
The latter focuses on simplicity and understandability while the expert API focuses on
being powerful, flexible, and extensible.

8.1 Design Guidelines

We first give a list of API design decisions that we find most useful for making Cf’s
API (the one, experts would look at) more understandable and secondly describe our
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8 Application Programming Interface

novice-friendly API . The guidelines from “Effective Java” are organized in ‘items,’ which
the interested reader is invited to consult for more detailed information.

Method placement: Stylos et al. have evaluated how developers explore an API [45].
Developers often start from one ”main“ object and have trouble finding other objects
that are not referenced in the methods of the main object. A potential main object
in Cf certainly is the class Request and requests must be sent over an endpoint.
This might not be obvious to a novice developer and since the class Endpoint is
in another Java package, it might take a long time until the developer has figured
out how to do it. Instead, Stylos et al. propose to add a send method directly to
the request object. This method automatically finds the default endpoint of the
application and sends itself over it.

Static construction methods: Constructors of a class all must have the same name,
which brings some limitations. For instance, each sequence of argument types
can only occur once. This is not the case for static methods that construct an
object. Furthermore, the method names can indicate in which case it should be
used. For this purpose, the factory pattern is often used. Stylos et al. have evaluated
the usability of constructors and factories and propose to place the static methods
directly in the class of the objects they construct [16]. For example, the class for
empty messages provides the methods newRST(Message) and newACK(Message)

to create a new ACK or RST for a specified message. This is better understandable
than a constructor new EmptyMessage(Message) where it is not clear, whether it
constructs an ACK, RST or something else.

Enforce noninstantiability (item 4): Some classes only contain static constants, enums,
and methods, e.g., our class CoAP. With a private constructor, it is not possible to
create an instance of that class which would be useless anyway.

Favor composition over inheritance (item 16): Inheritance explicitly unites the in-
terface of a subclass with its superclass. The interface of a class not only consists
of its method declarations but also the documented guarantees they promise. If a
subclass is not able to provide the guarantees of a potential superclass, it should not
inherit it but use the composition design pattern, i.e., using an instance of the super-
class as private variable. Java’s class Properties inherits from HashMap<Object,

Object> which violates this concept as it is not possible to use Integers as keys,
for example, even though an Integer is an Object. Californium’s class for proper-
ties therefore uses the composition pattern instead of extending Java’s Properties.
Another example is the response of the novice-friendly API which uses but does
not extend the Cf-internal class for responses.

Prefer interfaces to abstract classes (item 18): Java knows no multi inheritance.
Therefore, an interface is typically preferable so that a subclass is not limited to
one superclass only. A skeleton for an implementation of an interface still can be
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provided with an additional abstract class. Californium’s interfaces for Resources
and Layers are good examples of this.

Use enums instead of int constants (item 30): Often, integers or strings are used
as constants. However, when a developer uses an invalid value, the program still
compiles and later fails at runtime. Enums provide type-safe constants and even
provide an explicit list of possible values to the developer. In Californium, request
and response codes are implemented as enums, for instance.

Use instance fields instead of ordinals (item 31): Enums provide a method ordi-
nal() that returns their index in the enumeration. Since the order of enums easily
could be changed, the ordinal might change and should therefore not be used in the
code. Instead, an enum should expect an integer parameter in its constructor that
explicitly specifies its value.

Check parameters for validity (item 38): Often, the range of values that is allowed
to be stored to a field is restricted. For instance, CoAP dictates non-negativity and
a maximum on many numerical values for options. When a developer tries to use
invalid options, the mistake should be detected and reported as fast as possible.

Prefer two-element enum types to boolean parameters (item 40): A CoAP re-
quest can be either confirmable or not. Imagine a constructor that expects a boolean
to specify this parameter: new Request(GET, true). From this code, it is not
clear what the true stands for. With an enum instead, we can make the code look
much clearer: new Request(GET, CONFIRMABLE).

Return empty arrays or collections, not nulls (item 43): Developers often write
code that iterates over a list like this: for (Foo foo:getFooList()) {...}. If
the method returns null, however, the program throws a NullPointerException.
This pitfall is easily avoided by returning an empty list instead.

Prefer executors and tasks to threads (item 68): Executors provide a powerful in-
terface to execute tasks. Executors can easily be exchanged and can implement
sophisticated strategies to dynamically adjust the number of threads. They can
integrate the functionality of a timer and efficiently manage scheduled tasks and
normal tasks with the same task queue and the same threads. Using threads directly
in the code has none of these benefits.

ConcurrentHashMap (item 69): Data structures such as ConcurrentHashMap are
highly optimized and thread-safe. They support high concurrency without causing
significant amount of synchronization.
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8.2 Novice-Friendly Client API

The goal for our novice-friendly API is to abstract more from the underlying CoAP
protocol and to provide the developer with a simple and easily understandable API that
reminds more of a connection-oriented protocol. We also use a fluent interface which
allows chaining methods and with which better readable code can be written. We have
analyzed several CoAP and HTTP clients to adopt strengths and avoid weaknesses in
client APIs. The most profound difference among client APIs is whether they provide
asynchronous or synchronous methods or both. In case of a synchronous method, the
return value is usually the response. Asynchronous methods typically return void but
expect a function handle as parameter that will be invoked when a response has arrived.
We decided to provide both: synchronous and asynchronous methods.

The following classes compose our API for CoAP clients:

• CoapClient: to send requests to a server
• CoapHandler: function handle to react to a response or failure
• CoapResponse: to access the response of a request
• CoapObserveRelation: represents a CoAP observe relation with a resource

With an instance of class CoapClient, the developer sends requests to a server. A
client can be used to send multiple requests sequentially or concurrently. The CoapClient
can be thought of as a connection to a specific URI. CoapClient provides the methods
get(), post(payload), put(payload), delete(), and observe() which can be used
to send a GET, POST, PUT, DELETE request to the specified URI or to establish an observe
relation to the specified resource. All can be called asynchronously or synchronously. The
following example shows how a GET and POST request can be sent synchronously to a
server and how the content of the response can be obtained.

CoapClient client = new CoapClient(”coap://example.com:5683/example”);
String content = client.get().getResponseText();
String content = client.post(”some payload”).getResponseText();

The following example shows how we can asynchronously send a GET request and
define a CoapHandler which will be invoked when either a response arrives or if the
exchange failes. A request fails if the server is not reachable and the request timeouts or if
the server rejects the request. It is not a failure, if the server responds with a valid response
that has an error code in it.

client.get(new CoapHandler() {
@Override public void responded(CoapResponse response) {
String content = response.getResponseText();
// do something
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}

@Override public void failed() {
System.err.println(”Failed”);
// do something

}
});

The CoapObserveRelation represents an observe relation to a CoAP resource. It can
be used to cancel or refresh the relation and to obtain the last notification. The observe
method expects a CoapHandler that will be invoked whenever a notification arrives. The
following example shows how an observe relation is established and canceled again.

CoapObserveRelation relation = client.observe(
new CoapHandler() {
@Override public void responded(CoapResponse response) {
String content = response.getResponseText();
// do something

}

@Override public void failed() {
System.err.println(”Failed”);
// do something

}
});

// do something
relation.cancel();

8.3 Novice-Friendly Server API

We have also designed a simple API to construct the server and its resource tree. The
following example shows how a server can be constructed.

Server server = new Server(port);
server
.add(new ResourceBase(”A”)
.add(new ResourceBase(”A1”)
.add(new ResourceBase(”A1 a”))
.add(new ResourceBase(”A1 b”))
.add(new ResourceBase(”A1 c”))
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.add(new ResourceBase(”A1 d”))
)
.add(new ResourceBase(”A2”)
.add(new ResourceBase(”A2 a”))
.add(new ResourceBase(”A2 a”))
.add(new ResourceBase(”A2 a”))
.add(new ResourceBase(”A2 a”))

)
)
.add(new ResourceBase(”B”)
.add(new ResourceBase(”B1”)
.add(new ResourceBase(”B1 a”))
.add(new ResourceBase(”B1 b”))

)
)
.add(new ResourceBase(”C”))
.add(new ResourceBase(”D”));

server.start();

A service that wants to export its content as CoAP resource can either implement the
resource from scratch and implement the interface Resource or subclass ResourceBase.
A subclass of the latter can override the handle methods for GET, POST, PUT, or DELETE
requests. The handle method has an object of type CoapExchange as parameter which
represents the current exchange. It can be used to obtain the request payload and options,
and to respond. The following is a simple example of a CoAP resource. The GET handle
method responds with the text “hello world”. The POST handle method invokes the
method accept() which acknowledges the request to use a separate response. After some
computation, it sends the response. The PUT handle method invokes the method changed()
which triggers the resource to reprocess all requests from observing clients and to send a
new notification. The DELETE handle method deletes the resource from the resource tree
and sends a 4.04 (Not found) response to all observing clients.

public class ResourceExample extends ResourceBase {

public ResourceExample(String name) {
super(name);

}

@Override
public void handleGET(CoapExchange exchange) {
exchange.respond(”hello world”);

}
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@Override
public void handlePOST(CoapExchange exchange) {
exchange.accept();

if (exchange.getRequestOptions()
.hasContentFormat(MediaTypeRegistry.TEXT XML)) {

String xml = exchange.getRequestText();
// do something
exchange.respond(ResponseCode.CREATED);

} else {
// do something
exchange.respond(ResponseCode.CREATED);

}
}

@Override
public void handlePUT(CoapExchange exchange) {
// do something
exchange.respond(ResponseCode.CHANGED);
changed(); // notify all observers

}

@Override
public void handleDELETE(CoapExchange exchange) {
delete();
exchange.respond(ResponseCode.DELETED);

}
}

Finally, we show an example of a resource that has a critical section in its POST
handle method. There are two ways to guarantee mutual exclusion. First, we can use the
keyword synchronized. Second, we can extend the class ConcurrentResourceBase
and configure it in the constructor to use only a single thread to handle all requests.
Obviously, the developer needs to use only one of these techniques but for the sake of
example we use both. Note that in the POST handle function that we first accept the
request and only then enter the critical section.

The GET handle method needs to send a request itself to be able to respond to a
GET request. Therefore, it uses a CoAPClient which is created by the superclass in
createClient(). This client uses the very same thread as the resource to execute its
code. The GET handle method asynchronously sends a second request to another resource
and returns. Notice that the origin request has not yet been responded at this point, which
is fine. When the response for the second request arrives, the client invokes the method
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responded() which finally sends the response to the origin request. All executed by the
single thread that the resource uses.

public class SingleThreadedResource extends ConcurrentResourceBase {

public SingleThreadedResource(String name) {
super(name, SINGLE THREADED);

}

@Override
public void handleGET(final CoapExchange exchange) {
exchange.accept();

CoapClient client = createClient(”coap://example.com:5683/target”);
client.get(new CoapHandler() {

@Override
public void responded(CoapResponse response) {
exchange.respond(response.getCode(), response.getPayload());

}

@Override
public void failed() {
exchange.respond(ResponseCode.BAD GATEWAY);

}
});

}

@Override
public void handlePOST(CoapExchange exchange) {
exchange.accept();

ResponseCode response;
synchronized (this) {
// critical section
response = ResponseCode.CHANGED;

}

exchange.respond(response);
}

}
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9 Conclusion

We have presented an efficient and scalable server architecture to host CoAP-based IoT
Cloud services. With the gained knowledge from an extensive survey in the literature for
HTTP Web server designs, we have developed a three-stage architecture. The three stages
connectors, endpoints, and resources can be independently tuned to achieve the optimal
performance or desired concurrent environment. A novice-friendly API lets the developer
productively create services that export their functionality over a RESTful interface to
the outside world. The API allows the developer to asynchronously or synchronously
send requests to CoAP endpoints and establish observe relations. Experts can access
Cf’s internal API to have full control over CoAP messages and the protocol processing
chain. The layered stack structure and the separation of processing logic and state make
Cf understandable, maintainable, and extensible.

To benchmark Californium, we have built CoAPBench, a generic and distributed
benchmark tool for CoAP servers. We have shown that Cf scales smoothly up to four
cores for SMP and achieves a throughput as high as 140,000 requests per second on our
quad-core system. The throughput stays stable and the latency low, even when 10,000
clients concurrently communicate with the server. The old version of Californium was
originally designed as single-threaded prototype and, despite belated integration of multi-
threading, can hardly exploit more than two cores. We have compared the old and new
version of Californium to five state-of-the-art HTTP servers. Apache Tomcat and Apache
HTTP Server are from the fraction of multi-threaded architectures, Vert.x and Node.js are
event-driven, and Grizzly is a hybrid. We distinguished between two use-cases. In the first
scenario, few clients send many requests and, when using HTTP, can keep established
connections alive. This might be the case, when clients reach the server over a proxy. The
second is the scenario of a resource directory, where many clients send only a single request
and do not want to keep a connection alive. With connections kept alive, Vert.x achieves
the best performance about 15% below Cf, which is the highest of all the HTTP servers.
With an increasing amount of concurrent clients, the management of all the connections
becomes harder for all HTTP servers and their throughput declines. Without keeping
connections alive, Tomcat appears to be the best HTTP solution. Due to the excessive
number of messages that TCP requires to establish and terminate connections, HTTP
performs about ten times lower than CoAP. Neither CoAP nor HTTP servers manage
to utilize more than four cores on a many-core NUMA system, though. Californium
still achieves the highest performance but does not scale well if 8 or 16 cores with high
cross-node memory access times are available. The computing power of a NUMA system
would only be beneficial if a service itself was able to utilize it.
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Our quad-core machine turns out to have an almost perfect balanced hardware for
Californium. Network card and memory both are fast enough to keep the processor busy.
The same is true for HTTP with the keep-alive mechanism but not without it. In the
latter case, no server, except for Apache HTTP Server, is able to significantly utilize the
processor.

Future work

Duplicate detection is a bottleneck in Californium. Cf is able to receive an immense
number of requests per second, which demands a huge amount of memory to store all
the exchanges. In the future, we might consider relaxing the principle of remembering
the whole exchange for each request and find a more economical solution. A radically
different approach is the thin server architecture [25] in which backend services are merely
in client role and devices in server role. This way, the bulk of message deduplication is
distributed and Californium unburdened.

Currently, Californium implements IETF’s Proposed Standard for CoAP (coap-18) and
the drafts for blockwise transfer (block-12) and resource observation (observe-08). Cf
integrates resource discovery, HTTP and CoAP proxy support and DTLS. Currently, we
are working on group communication and OSGi integration.
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