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1. Introduction 

1.1. Definitions 

1) An arrangement of n points on the sphere has the maximum property if the minimal distance 

between any two points of the set is maximal.  

2) If n points are placed on a sphere and moreover a force is assumed to act according to a certain 

law one can consider equilibrium configurations or stable equilibria only. If this happens we 

shall call the arrangement of n points an equilibrium configuration.  

1.2. Questions 

1) Suppose the vertices of a platonic solid are placed on the unit sphere. Does this provide an 

example of an arrangement with 

 - the maximum property or 

 - an equilibrium configuration? 

2) In what way do specific force laws give rise to different equilibrium configurations? 

2. Methods 

All our results are based on two types of simulations.  

- Stochastic simulation: the points on the sphere are subject to random displacements and the 

evolution towards a desired optimum is controlled by selection. Clearly this idea is inspired by 

Darwinian Evolution. Figure 1 shows a typical process of the points trying to reach an 

optimized situation. 

- Deterministic simulation: Chose some hypothetical repelling force acting between the points. 

Letting the points move we would expect that they end up in an equilibrium configuration. 

Our simulation is time discrete and in each one of the steps we chose a single point Pk, and 

determine the resulting force caused by all the other points Pi , i ≠ k, at the given moment. The 

new position of Pk is now computed by applying a shift along the resulting force and 

projecting the end position back to the sphere. Figure 2 shows how the points move directly to 

their destination. 

3. Experiences and results 

Our experimental setup proved to be advantageous because the two independent methods allow cross 

validation of results. The deterministic simulation excels in runtime behaviour. Its drawback is the 

dependence on a specific physical law. In contrast, the selection criteria of the stochastic simulation 

may easily be adapted to various criteria. However the runtimes usually exceed the ones of the 

deterministic simulation.  

3.1. Repelling springs and Hooke’s law 

We discovered the following surprising fact: An equilibrium position is attained if and only if the 

center of gravity of n points coincides with the center of the sphere. Moreover the resulting energy 

attains a maximum of size 2n
2
. For instance the platonic solids are equilibrium configurations but 

moving four of the vertices of a cube to the North Pole and four to the South Pole gives another 

equilibrium configuration. The deformation can be achieved in such a way, that the center of gravity 

stays at the center of the sphere. The conclusion is that in this case the energy of the configuration is 

not a suitable invariant for finding arrangements with the maximum property.  
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Using the Darwinian approach it became clear that the cube cannot satisfy the maximum property. 

Furthermore, it was doubtful whether the dodecahedron provided an arrangement with the maximum 

property. The investigation of this case prompted the next steps in our project.  

- Definition of new invariants, e.g.  

- Incidence matrix, distance matrix, eigenvalues  

- Coulomb’s law and potential 

- total lengths of the edges using the convex hull 

- convex hull 

- surface and volume 

- graphical display 

- GUI (as shown in figure 3) 

3.2. Experiences 

Increasing the number of vertices, naturally leads to an increase in runtime. Our progress depended 

crucially on improvements of the runtime behaviour. Consequently, all our simulations were based on 

extremal energy criteria rather than the maximum property.  

E.g. , the runtime for the convex hull operation grows with a power of four in the number of points. 

There only is an alternative, if the simulation optimize the point arrangement such a long time, that we 

expect a nearly perfect regular distribution, we are able to use another method to create the convex 

hull where the runtime grows only with a power of three.  

3.3. Coulomb-Energy 

The logic result would be such that the energy increases with amount of points and not visa versa. The 

deterministic simulation is based on the principle that the points repulse each other. A higher distance 

therefore leads to a smaller energy. One could imagine pressure springs between the points. To 

compute such a comparable value the elements of the distance matrix real edges exponentiate with 

factor -1. The energy-value is therefore higher with 2 points being positioned closed to each other 

compared to being far apart. This calculated value will be divided by the amount of edges of the figure 

for getting the Coulomb-Energy per edge. The Coulomb-Energy of the solids are visible in table 6. 

3.4. Applications 

It has definitely been disproved, that all the platonic solids (see picture 4) provide examples of 

maximum property. This can be proven by two examples, these are n=8 and n=20. By n=8 points the 

result of our simulations is not a platonic solid (a cube), it represents an antiprism based on two 

squares. The antiprism was already known to Rutishauser who found the example by elementary space 

geometry in 1945 [R]. While it was clear, that this configuration was superior to the cube, it remained 

open whether this example has the maximum property. This antiprism is shown in figure 5. 

The second example is the dodecahedron. Both simulations done with 20 points don’t result in the 

expected platonic solid; they result in a Polyeder, which consists of isosceles triangles. This solid is 

specifically interesting in relation to its energetic situation. With the, descript in chapter 4, energy 

measurement method Coulomb-energy for each edge, one realizes that the solid has compared with the 

dodecahedron a surplus in energy of 30%. The Polyeder has also an essential higher volume and a 

higher surface compared with the dodecahedron. See for more Details at figure 6. 
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3.5. Investigations on more ambitious cases, Fullerenes 

corresponding to C24, C60, C120. 

None of C24, C60, C120 provides an optimum configuration for neither the Coulomb potential nor the 

maximum property. The C60 and the solid with the maximum property for n = 60 are compared in 

picture 7. We found that in each case triangles dominated the surface of the favourite solids. In the 

case of the cube and C24 quadrilaterals popped up on the surface of the best arrangements found by 

simulation: the previously mentioned antiprism based on two squares and a platonic involving six 

squares. Also solids with odd number of points are composed of triangles. These are shown in figure 8 

to 11. 

Other examples for configurations with maximum property but also containing quadrilaterals are 

figures with n = {40, 48}. 

4. Discussion 

Our method is based on floating point operations. Therefore the scope of our results is limited. We are 

able to disprove certain claims by computing counterexamples. However we cannot verify the 

maximum property nor any equilibrium configuration beyond the scope of numerical approximations. 

5. Open Ends 

An obvious generalization comes to mind: Instead of a sphere, any 2-surfaces could serve to contain a 

distribution of n points, and analogous questions could be asked. Placing dots on a torus, or even on 

the fur of a cheetah could be analyzed. 

Both types of simulation could be adapted to deal with this more general setup. It then becomes 

essential to focus on two possible interpretations of our questions. The distance between 2 points could 

be measured along a straight line in R^3 or along a geodesic line on the surface itself. The case of the 

trefoil-knot might serve to illustrate the differences between the two ways of looking at the problem. 

6. Final remarks 

The collection of our Matlab programs forms a workbench which proved to be useful for experimental 

researches in our area of interests. The subject is an attractive one for young scientists because it leads 

to blend ideas from biology, physics, geometry, numeric, and computer science.  

We wish to thank the foundation "Schweizer Jugend forscht", who delegated our project at the European 

Union Contest for Young Scientists, for helpful support and to the Kantonsschule Baden who built the 

base to work at such a project. We especially want to thank H.R. Schneebeli who supported us during the 

whole project and increased the quality of the work, as well the quality of the report dramatically. 
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7. Annex 

7.1. The Step size control 

In both simulations it is possible to control the step size by changing the value of a constant K. In the 

stochastic simulation the constant k is used to control the maximal possible random movement of a 

point in each step, while in the deterministic simulation the constant k controls the strength of the 

repelling force between the points.   

The purpose of this chapter is to analyze the speed of the two simulations in reaching the target result, 

this being the best possible result and the timely dependency of reaching this target from the size of 

the constant k. 

To be able to answer this question there has been a random distribution of points (4, 6 and 12). Both 

methods have than been optimized, by using different constants, until a previously required accuracy 

has been reached. This required accuracy represents the allowed tolerance of theoretically optimized 

distances. The steps to reach this defined accuracy were counted. 

For more than 12 points, the calculation would be very time intensive and more complex. This based 

at the circumstances that the solids could have different distances. This is the reason that for this 

problem you will find only a few examples in the displayed results. 

7.1.1. Efficiency of the deterministic simulation 

The deterministic simulation has shown that, when using a bigger value of constant k, the defined 

result has been reached in less time. Table 1 displays the average number of required steps, when 

using the deterministic simulation with 4 points and a few different constants. This data is displayed in 

diagram 1 in such a way that the linear increase of the necessary steps is easily recognizably. As 

visualized in the table, constants of 1/25 require massively more steps. The diagram therefore only 

shows a maximum number of 100 steps. 

By using a constant of 1000, the deterministic simulation reaches an accuracy of 99% with an average 

of 6 steps. Two additional steps have already drastically increased the accuracy by a factor 10. The 

result, when using 15 steps, has reached an accuracy of 6 positions behind the comma. The 

deterministic method is, when using such big constants, extremely efficient. 

Applying constants such as K=10^6 or K=10^10 resulted in the same amount of steps as when using 

K=1000. For calculations with more than 60 points the constant should be reduced, to avoid extreme 

high movements initiated trough the strong repulsion of the many points. 

With 12 points the deterministic simulation takes slightly longer. Table 2 shows the necessary steps to 

reach an accuracy of 10^-2 to 10^-6.  

It shows that there is an increase in steps, the calculation time however is still well below one second. 

The data in table 1 as well in table 2 shows that the number of steps is proportional to the logarithm of 

the increase of accuracy. This characteristic is extremely helpful trough to the fact that a massive 

increase in accuracy not necessary lead to a higher computing time. 

7.1.2. Efficiency of the stochastic simulation 

The number of the selected constant is much more decisive when using the stochastic simulation 

compared to the deterministic one. Table 3 shows the amount of steps for 4 points and different 

constants to reach a defined accuracy. 
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“XXX” represents the fact, that the simulation hasn’t been able to compute a result with the required 

accuracy and not exceeding 10^5 steps. For 4 points it seems that a constant in the area of 1/25 is most 

ideal to reach an accuracy of 99%. A higher accuracy would anyway not be recognizable by the 

human eye. For reaching a higher accuracy a smaller constant must be chosen. Most ideal would be a 

continued adoption of the constant to the accuracy of the current distances between the points. In 

generally it’s visible that the necessary number of steps to reach e certain accuracy proceeds highly 

exponential. Another remark is that the stochastic simulation is controlled randomly and does lead to 

some diffusion. Table 4 shows the number of required steps when applying 12 points. 

Interesting is the fact, that it requires less steps when using a constant of 1/625 with a reduced 

accuracy, compared to 4 points. Three times more points need nevertheless around the same amount of 

steps. The stochastic simulation does require a higher computing time compare to the deterministic 

simulation. This however could change when using high numbers of points with a high accuracy, the 

stochastic approach would than become more efficient. To prove such would require further 

researches and a lot of computing power. 

7.2. The �
�
-law 

The first analyses of the results have shown the following: If all distances between all points are 

squared and summarized, this than reflects the conclusion of the number of points to be squared.  � ������ �	
�� �� ����� ��� 
This characteristic goes for all possible dimensions as long the center of gravity of the figure is 

positioned on the zero point. � �������  ! "
 #$%&'() * +, - ./01234

 56789:; < =>?@ABC  D EFGHIJKL M NO PQ RSTUVWXYZ[\ ] _̂`abc d e fghijklm n opqrstuv  w x yz{|}~�� � �� ������������������ � ��� � ����� ¡¢£¤¥¦§¨©ª«¬®̄ °± ²³´µ¶·¸¹º»¼½ ¾¿ À ÁÂ
 

The sum of the distance between and the North Pole ÃÄ and all other Å Æ Ç points does also result in ÈÉ. 

The distances of the other points need to be included resulting in Ê Ë ÌÍ Î ÏÐÑ
. This result must be 

divided by factor 2 since each distance has been accounted for twice, first from ÒÓ to ÔÕ and second 

from Ö× to ØÙ. Therefore it remains ÚÛ. 
The following is the proof that the ÜÝ-law is accurate for figures for which the center of gravity is 

positioned zero point. 
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For simplification * +,-./0123456  abbreviated with 78. 9 :; <
 must be positive and additional a conclusion of 

the above result is: =>? @ A BC DE FG H IJK
 

This goes for all possible figures with n points on the unit sphere. When the sum of the squares of all 

distances between all points should equal exactly LMN, also OPQ R S TU VW XYZ [\]
 s must equal ,̂ 

also _ `abcdefghijk l mno. 
Or expressed differently the sum of all position vectors to the points must result in the zero vector that 

means the center of gravity of this figure must be positioned in the zero point. 

7.3. Surface and Volume 

The value of the surface and the volume of a solid seem to be an ideal invariance. The higher the value 

the more optimal is the distribution of the points. The higher the number of points, the surface and the 

volume between these points approach the value of the unit sphere (4*pi respectively 4/3*pi). The 

surface and volume for some examples is entered in table 5. This data includes the percentage portion 

of the unit sphere. The value of the surface divided with the volume results in a value which displays 

the enclosed volume of the associated surface. For the sphere this value would be exactly 3 and the 

more a Polyeder resembles a sphere the value decreases to 3. 

7.4. Higher exponents 

The simulation also has been run with other formula than the Coulomb-law. But the simulation never 

got a plausible result whereby there were no further investigations in this affair. 

7.5. Graphical display 

The simulations give us the coordinates of the results but it is nearly impossible to analyse the figures 

without a graphical output as well. With the help of the plot-command [H] in Matlab the points can be 

visualized and another program builds a sphere. This sphere is visualized by showing 8 lines of 

latitude, the equator, and the 0° meridian.  

To get a better overview over the points, the configuration gets moved around the z- and the y- axis, in 

such a way that moves one point to [0|0|1]. After that, the configuration gets moved around the z-axis, 

to have a second point lying on the x-z-layer. With this procedure, we can make sure that same 

configurations result in the same graphical output. 

  



Simulations on the Sphere  21.05.2007 

Page 8 of 8 

Martin Lanter, Lucas Brönnimann 

7.6. Subprograms 

These subprograms were a part of the simulations to overtake some functions. 

Subprogram Input Output 

Abst Point, distribution 

configuration 

Sum of the distances of the point to the points of the 

distribution configuration 

Pnet Distribution configuration Incidence matrix 

Pnet2 Regular distribution matrix Incidence matrix 

Dmat Distribution configuration Distance matrix 

Rot3 Distribution configuration Turned distribution matrix, with point 1 on the 

North pole and point 2 at the prime meridian 

Dpyr Number of points Distribution configuration with points 1 and 2 on 

the North and South pole and the other ones regular 

on the equator. 

Diag0 Distance matrix Distance matrix where the diagonal is set to zero. 

Pweg Number of points Way coordinates of the points on their way from 

their start to the target. 

Surf2 Distribution configuration The surface of the solid 

Vol Distribution configuration The volume of the solid 

Kugel2 Void Creates s window with a sphere, where the solids 

can be drawn. 

Show Distribution configuration Shows the points of the distribution configuration in 

a 3D coordinate system. 

Name Distribution configuration Set the number of the points of the distribution 

configuration in a 3D coordinate system at their 

positions. 

Cnct Incidence matrix, distribution 

configuration 

Connects the points of the distribution matrix 

related to the incidence matrix. 

Hull Incidence matrix, distribution 

configuration 

Interpolates the points of the distribution matrix 

related to the incidence matrix with triangles. 
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