
 Martin Lanter

March 14, 2013 Page 1 of 7

Model-View-Controller (MVC) Pattern in
Bomberman
How MVC is implemented in a larger application and potential solutions to common decision

problems that arise when implementing MVC.

Abstract

Bomberman is a game written in Java using the Swing library and implementing the

Model-View-Controller (MVC) pattern. Much literature can be found in books and online

that describes the MVC pattern. They usually contain a small demonstration with one

class per model, view and controller respectively. However, they lack a larger

demonstration where model and view are compositions of multiple classes.

Bomberman’s model and view consist of roughly 25 classes each (without AI). This

article explains how they all work together.

Table of Contents
Abstract ... 1

1 Introduction ... 2

2 The Model-View-Controller (MVC) Pattern ... 2

3 Observer Design .. 4

4 The Journey of an Image from the Disk to the Screen .. 6

5 Conclusion ... 7

 Martin Lanter

March 14, 2013 Page 2 of 7

1 Introduction

The Model-View-Controller (MVC) pattern is a widely used programming pattern in Swing

applications. The basic principle of MVC is a partition of the logic that belongs to the model and the

logic that belongs to the view. A controller serves as glue between them. Many tutorials exist in

books and online1 2 3 and most of them come with a small demonstration of a minimal MVC

implementation. However, real applications are larger and consist of many more classes. The

Bomberman client, for instance, consists of roughly 100 classes and 10000 lines of code. Model and

view consist of roughly 25 classes each. Applying the MVC pattern to a larger application forces many

non-trivial decisions. Some of these are outlined here and possible solution discussed. I have

implemented the MVC pattern multiple times in different projects and I would like to share my

insights about some common misconceptions and problems that arise when implementing the MVC

pattern and which are not covered by small 3-class-demonstrations.

If you plan to program your own Swing application, in particular a game, you might find this article

helpful to not make the same mistakes I had to learn from and to skip hours of philosophizing about

how to validly implement MVC. This article targets programmer that have a basic understanding of

Java, AWT or Swing and the MVC pattern.

2 The Model-View-Controller (MVC) Pattern

The model is a data structure that represents the state of the game. It holds all information about

where each obstacle is placed, where bombs, explosions and players are and all their properties such

as the speed and direction of a player. A good model design is vital as your whole game bases on it.

The model must not depend on anything from the controller or the view and thus must not have any

direct references to such objects (transitively).

Bomberman has a class Model that is the root to all information. The model contains lists that

contain all the objects on the playing field. There is one class that represents a player, bomb,

explosion, item or obstacle respectively. These are model classes as well. Some of these objects have

a back-reference to the model. For instance, a player needs to know the width of the playing field

which is stored in the model. Since both classes are model classes such cross references are

acceptable and in some cases indispensable.

The view displays your state or rather model. It has a reference to the model and is able to retrieve

the exact state to render and display on the screen (Figure 1: State Query). The view must not depend

on the controller and thus must not have any direct references to it (transitively).

Bomberman’s bomb model class does not have any idea, how a bomb looks like. It only knows data

such as where it is placed and by which player. The view, however, certainly knows how a bomb is

supposed to look like. Thus, it paints the image that belongs to the bomb at the current time at the

position where the bomb is placed. In Bomberman, the bomb has its own view class BombUI. An

object of BombUI has a reference to the Bomb object it graphically represents. Analogously, each

model-object such as Explosion, Item, Player and so on has a corresponding UI view-object.

1 Java SE Application Design with MVC: http://www.oracle.com/technetwork/articles/javase/index-142890.html
2 Game Architecture: http://www.koonsolo.com/news/model-view-controller-for-games/
3 MVC – Design (German): http://www.java-forum.org/allgemeines/91829-mvc.html

http://www.oracle.com/technetwork/articles/javase/index-142890.html
http://www.java-forum.org/allgemeines/91829-mvc.html

 Martin Lanter

March 14, 2013 Page 3 of 7

Figure 1: MVC diagram from Sun’s Model-View-Controller pattern documentation for Swing.

If the model does not have a direct reference to the view, how is it able to notify the view, when the

state has changed, e.g., when a player has died. The answer is the observer pattern (Figure 1: Change

Notification). An observable object contains a list to all objects that have interest into the observable.

Interested object are called observers and register at the observable. The observer only exposes a

restricted interface to the observable, i.e. it implements the observer interface that only provides

update-methods. The observable does not know the exact type of its observers; it only knows how to

notify them, if an event occurs.

The controller glues the model and view together. Usually, it first instantiates the model followed by

instantiating the view (Figure 1: View Selection) with a reference to the model (and the view registers

itself at the model as observer). If the user changes something on the view, e.g., clicks a button or

enters a text into a text field, the change must be propagates to the model. Again, we use the

observer pattern. In Swing, observers are called listeners (Figure 1: User Gestures). To listen to a

button one has to register an ActionListener containing a method actionPerformed() that is called

when the user presses the button. Such a listener is a mini-controller and changes the model

according to the occurred event (Figure 1: State Change). It is somewhat debatable whether a listener

must necessarily be defined in a controller class/package or whether it is in some cases fine to define

them in a view class despite being a controller. Strictly speaking, a controller must be in a controller

class and your view should provide setter for all the listener the controller is able to register, e.g., the

OK-button-listener, cancel-button-listener and all listener to RadioButtons, CheckBoxes, Textfields

and other modifiable Swing components. As a consequence, you end up providing numerous

methods just for registering a controller that propagates a change to the model and could have been

written in the view just as well. If you even nest multiple view panels and add a RadioButton to the

innermost panel, each panel has to provide a method to set the listener for that RadioButton and

delegate it to the next inner panel. Since this is undesirable, most Swing developers relax the MVC

partitioning in this regard and define listener in view classes.

 Martin Lanter

March 14, 2013 Page 4 of 7

Side note: Controlling objects such as a timer that periodically triggers your game to update its state

can be placed inside the controller. You could argue that periodic updates are part of the model

world and move it into the model. I think this is fine if you use the java.util.timer. The

javax.swing.timer belongs to a swing (view) package though and should not be inside the model.

Note that there are classes in the AWT and Swing package that are called model classes like

javax.swing.DefaultListModel. My advice is yet not to mix up your model classes with such swing

model classes. They are not designed to be low-level model classes since they already define with

which view class they must be displayed. What if you later want to display the same objects in a JList

on one JPanel and as JComboBox on the other JPanel? Better use an array or collection class in your

model.

3 Observer Design

First, let us look at the listeners that listen to user gestures. Swing components provide methods

where a controller registers listeners. For each listener type, there is an interface, e.g. ActionListener,

MouseListener, MouseMotionListener, MouseWheelListener, ComponentListener and many more.

Subclass these interfaces and implement the required method to listen to events from users. Some

listeners contain many methods, MouseListener, for instance, has five. If you want to react to mouse

clicks alone, you can subclass MouseAdapter and override the method mouseClicked. Adapter

classes are abstract classes that have dummy implementations that do nothing for the methods of an

interface. If you have multiple components that share an ActionListener, consider using a

java.swing.Action4.

The second observation flow goes from the model to the view. If you have a boolean in your model

that is only changed by a CheckBox, you might ask yourself why the model should update the

CheckBox after the listener of the CheckBox updates the model. First of all, you do not need to be

afraid of an endless loop where listener and model eternally keep updating each other. The smart

Swing components only trigger an event if the new value is different from the current value.

However, if the user clicks the checkbox the graphics switches automatically without update from

the model. Yet, if you have two graphic components displaying the boolean state, clicking one

component does not change the graphics of the other. For instance, if you include a

JCheckBoxMenuItem to your menu and click on it, the JCheckBox still displays the old value.

Therefore you need that possibility to update observers when the boolean changes.

Java comes with a ready-to-use observable class and observer interface in the java.util package. An

observer must implement a method update() that takes an Object as parameter. When the state of

the observable has set to changed and notifyObservers(arg) is called, the update method is executed

with the specified argument arg. Since arg is an Object, the observer needs type checking to cast it to

the right type and use it. This results in ugly code. Alternatively, if you only need to tell the observer

what kind of event has occurred but no additional object is required for the observer to react, you

can use an enumeration (Enum). A Java Enum is a special data type that represents a constant value.

Define an Enum with one constant per kind of event and when an event occurs give the

corresponding Enum constant as argument to notifyObserver. The observer then can check for the

kind of event by using an if-statement and “==” or a switch-construct.

4 http://docs.oracle.com/javase/tutorial/uiswing/misc/action.html

http://docs.oracle.com/javase/tutorial/uiswing/misc/action.html

 Martin Lanter

March 14, 2013 Page 5 of 7

However, you might prefer to have arguments of a normal class and yet avoid type checking.

Generics, introduced in Java 1.5, solve this problem. In the following code snipped A is the generic

type of the argument.

public interface Observer<A> {
 public void update(A arg);
}

public abstract class Observable<A> {

 private List<Observer<A>> observers = new LinkedList<>();

 public void addObserver(Observer<A> obs) {
 observers.add(obs);
 }

 public void notifyObserver(A arg) {
 for (Observer<A> obs:observers)
 obs.update(arg);
 }
}

To have an observable that notifies observers with an argument of type String, let it extend

Observable<String>. Observers that implement Observer<String> can be registered at the

observable. If observers register at multiple observables and need to know the source of a

notification, you can use an argument type that provides a method to get the source. Note: Any

observer that can be notified with an argument of type X can be added to any observable that

notifies with an argument of type X. If you want to stronger distinguish between different observers,

read the blog5 from “Jaana” (I don’t know her full name) who explains why you need three generic

types for that purpose.

The problem with a generic observer is that they have only one update method. Code to distinguish

many different events grows large and confusing. One solution is to make the argument a visitor. The

observable calls its observer with the visitor as argument. The observer tells the visitor to visit it (the

observer) and the visitor calls the corresponding method of the observer. Whether that is less

confusing is disputable. In contrast, it is a pretty easy task to just write your own observer

implementation with all the methods and arguments that serve you well. Bomberman’s model

contains bombs, explosions, items, players, teams and more, each of which can be added or

removed. Thus, the model notifies observers that implement 14 methods whenever any such object

is added or removed with the object itself as argument. When the model notifies the view about a

new bomb, the view immediately receives the bomb instance and is able to generate a

corresponding UI object as indicated in Figure 2. As soon as the bomb vanishes again, the view

receives it and deletes the corresponding UI. This is crucial for the view to always be able to visually

represent the model appropriately with UI objects for each model-object.

My advice is to make each modifiable model object an observable using one of the described

observer concepts. In Bomberman, bombs, explosions and items are not modifiable as they are just

static objects where only the visual representation changes (of which the view takes care of). The

model itself, players and teams, however, are modifiable. Players change their direction or get

upgraded when catching an item. Teams gain or lose players. Bomberman’s score panel on the right

5 http://beyond100classes.blogspot.ch/2012/01/observer-part-iv-generic-observer.html

http://beyond100classes.blogspot.ch/2012/01/observer-part-iv-generic-observer.html

 Martin Lanter

March 14, 2013 Page 6 of 7

always shows the teams and the players. When a team is added to the model, the model notifies the

score panel with the new team as argument. The score panel registers its observer at the team and

repaints itself. If a team changes, it notifies the score panel which repaints itself. If a team is removed

from the model, it notifies the score panel which removes its observer from the team and repaints

itself. Using this approach, Bomberman is very extensible. Integrating multiplayer support and

propagating changes over the network was very easy and kept the design smooth and clean. No type

checking or other magic tricks were required.

Beware of multithreading! With today’s computers providing more and more CPUs it is tempting to

speed up independent computations by attaching them to multiple threads. This, however, might

lead to complicated effects. One thread might add a new object to the model and start notifying

observers. Another thread might remove that very object from the view again and start notifying the

same observers as well. It is possible for the second thread to notify an observer that the object has

been removed before the first thread has even notified it that the object has been added. From the

observer’s point of view, it looks as if an object is first removed and then added to the model which

might lead to confusing results. Adding synchronization leads to more complicated code and is a

potential bottleneck that does more harm than good. Without doubt, multithreading is and becomes

even more important over time; yet, you must use it cautiously.

4 The Journey of an Image from the Disk to the Screen

The UI of Bomberman basically shows images that are loaded from the disk. Bomberman uses

BufferedImages to use an image inside the program. Although each instance of classes BombUI,

ItemUI and so on requires its image load from the disk, we do not want to repeatedly read data from

the disk anytime such an instance is created. Therefore, Bomberman uses a singleton class

ImageCenter that stores all the BufferedImages once loaded.

Images get from the disk to the ImageCenter in three steps. First, a static string leads to a

configuration file. Second, the configuration file contains all paths to required images. Third, these

images are loaded from ImageCenter. ImageCenter uses a class called GraphicsConfig.

GraphicsConfig contains the path to the configuration file and loads all paths which ImageCenter

then uses to load the images.

Figure 2: Association of model and view objects in Bomberman. The model contains all players, bombs and so
on. When a new Player is added, the model notifies the view which creates a PlayerUI that references the
Player.

 Martin Lanter

March 14, 2013 Page 7 of 7

Bomberman’s images can’t just be displayed the way they are loaded. Since most of the UI objects

are animations the corresponding image is a row of all frames of the animation. The bomb, for

instance is a sequence of 16 images. Others like the explosion are more complicated. I do not like the

idea that the UI class has to cut up such an image appropriately to show the current frame. Instead,

Bomberman has a further class that takes a BufferedImage as constructor argument, cuts the image

the way it is supposed to and provides methods to access the different frames. The explosion

corresponding class, for instance, is ExplosionImage and it provides methods for the top, right,

bottom and left end of an explosion plus the horizontal, vertical and center piece. This gives a good

abstraction of the actual image structure and the frames that are displayed by the UI.

Figure 3: The journey of an image from the disk to the screen. A path leads to the configuration file that leads
to all images. Images are loaded as BufferedImage and given to a UI image class that cuts them into pieces.
The UI gets the appropriate frame from the UI image and paints it to the screen.

5 Conclusion

This article explains how the MVC pattern has been implemented in Bomberman. Model and view

both consist of several classes. To each model class there is a corresponding UI class in the view.

Different strategies for observer designs have been given. The controller listens to user gestures and

propagates them to the model. The model implements its own observable interface and notifies the

view component when it changes. Other modifiable model classes such as Player and Team

implement Java’s Observer interface. Unmodifiable classes such as bomb an explosion where only

the UI changes do not need to implement an observer.

Images should be reused and not repeatedly loaded from the disk. In Bomberman, the ImageCenter

keeps all images as BufferedImage. Specific classes cut the images into appropriate pieces and

provide methods that the UI classes use to get a particular frame to display on the screen.

