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Abstract

We present the Actinium (Ac) App-server for Californium, a server design for apps written
in JavaScript. The targeted use-case is the smart home environment, but the concept can
also be ported to business and industry scenarios. Actinium extends the Californium
(Cf) CoAP framework by integrating the Mozilla Rhino engine to provide support for
JavaScript apps. Apps can dynamically be installed, removed, and updated at runtime and
can export their configuration and output as CoAP resources. Furthermore, we propose the
CoAPRequest API, an interface for JavaScript apps to communicate asynchronously and
synchronously with other CoAP resources. The CoAPRequest API is designed similarly to
AJAX’s XMLHttpRequest API. Actinium monitors all the apps and provides information
about them, such as CPU usage, message throughput and more. Although performing
about factor ten slower than native implementations, the application logic is executed fast
enough to orchestrate devices in a low-power network.
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Objectives

In a first step, the student shall integrate Rhino into Californium. This allows Californium
to interpret JavaScript scripts. The apps shall be (un-)loadable at runtime and export their
configuration and output (e.g., status or intermediate results) as CoAP resources.

Next, the student shall develop an API that allows JavaScript apps to use Californium’s
CoAP stack. Server aspects shall be mapped to CoAP resources, which can be defined
in the script together with their handler functions. Client functionality shall be provided
through an object similar to AJAX’s XMLHttpRequestObject that provides the same
functionality for CoAP.

Finally, the student shall evaluate the app server. On the one hand, the performance
must be benchmarked: All application logic is stripped from the devices, so that their
processing power is unutilized. This reduces complexity and hardware requirements, but
introduces communication overhead. On the other hand, the design space could be limited.
For examination, the student shall create different application kernels that are typical for
the Internet of Things and wireless sensor networks (e.g., data collection, actuation, and
control loops).

ix





1 Introduction

Today’s homes encompass a notably large collection of electronic devices and appliances.
While the Internet is unabatedly growing and extending to the physical world, all kinds
of appliances are being incorporated into it. In the future, freezers, light switches, and
thermostats are expected to be part of this Internet of Things. A household is going to be a
collection of smart appliances, interconnected and interacting with each other. Together
with each appliance, an app can be shipped that controls the appliance and augments
its functionality. For instance, pricing information from the smart grid could adjust the
temperature of a freezer or an app could monitor the total load of our power outlets to
comprehend energy costs. Powerful appliances, such as the router or TV set, will be able
to host the apps. New apps can be installed and old apps can be deleted or updated with
the most recent version. Apps can work alone, together or build upon each other.

We assume a Web-like infrastructure of devices that export their functionality through
RESTful Web Services [2] [6]. Through these interfaces, we are able to control the apps
and retrieve data from them. For instance, we will adjust the desired room temperature
not physically with a button on certain devices, like heaters or radiators, but change the
desired value on a virtual app that is responsible for this matter. The app then manages
the available heaters and radiators to achieve the desired room temperature. Just as well,
instead of watching the display of a thermostat, we retrieve the current temperature from
this app, for instance through a desktop widget or smartphone app. Moreover, other apps
that depend on the current room temperature might retrieve it from the temperature app in
the same way or register as observer and be notified when the temperature changes.

To connect apps and devices we require a communication protocol. Kovatsch [4]
suggests the Constrained Application Protocol (CoAP) [10], a RESTful protocol similar to
HTTP that operates over UDP instead of TCP. Kovatsch [3] argues that smart devices and
apps will be an extension to the Web and therefore are to use Web technologies like CoAP
for heterogeneous systems. CoAP combines well-proven concepts from the Internet and
allows a scalable, resource-oriented architecture [4] [7]. Obersteg and Pauli [9] proposed
Californium, a modular CoAP supporting framework, written in Java. Resources that
serve as ”heavy-weight“ apps can easily be written with Java and added to the resource
tree. However, installing, removing and updating these resources cannot yet be done
dynamically but require a restart of the framework.

Maintainability of apps is a major factor for end-users. People expect easy access to
apps and strong control over which apps are installed and removed. To this end, the

1



1 Introduction

underlying system must provide straightforward and uncomplicated means to manage its
apps [1]. People will not tolerate to restart the whole system just to add, remove or update
a single app.

Furthermore an end-user will expect his devices to support app-based control and the
availability of a broad variety of apps for those devices. Thus, the industry must be
able to provide solutions for these needs. To enhance the productivity of development
teams, the program language to construct apps must be as simple as possible, powerful
though. Scripting languages like JavaScript serve this purpose very well, are easy to learn
and already well known by many developers. With support for scripting, even informed
end-users could customize apps or even create them by themselves. Appropriate APIs
enable developer to integrate complex tasks like communication with other apps or sources
from the internet in a simple, reliable and intuitive way.

To meet these goals, we propose an app-server design that allows to dynamically
installing, removing and updating apps. We implemented our design in Actinium (Ac)
App-server for Californium. Actinium supports scripting apps by integrating Mozilla’s
JavaScript engine Rhino and arms it with a powerful API, called CoAPRequest [8],
to communicate with other resources. Actinium enables full control for end-users by
monitoring apps in detail and recording incomming messages.
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2 Design Overview

In Actinium, it is possible to use the same app more than once. Reusing the code of an app
not only saves storage space, but also allows us to update an app’s code and automatically
also update all its instances. If there is an app that observes the power consumption of one
or more devices for example, we might create one app-instance of this app that observes all
devices on the first floor, and another independent app-instance that observes all devices
from the second floor. There is no artificial limitation on how many instances of an app
are created. App-instances are independent from each other, the only similarity being, that
they execute the same program code.

Actinium exports itself as a resource with subresources. It provides separate subre-
sources for installing, deleting, updating, monitoring and configuring app-instances. In
addition, it contains the app instances itself, which are resources, containing their own
subresources. Actinium, apps and app-instances, all have different properties. We first
describe what kinds of properties Actinium has to manage and then give an overview over
the structure of the corresponding resources.

2.1 Configurations

There are several classes of properties that an end-user or a developer might want to
configure. We call a set of properties a configuration. We identify four classes of
properties that influence the behavior of the server, apps or app-instances:

Server properties: Properties that belong to the whole server are called server properties,
e.g., the path to the directory on the disk, where the scripts of installed apps are
saved to, is a server property.

App properties: Properties that are relevant for an app in general and all its instances,
e.g., that an app is an app written in JavaScript and therefore has to be interpreted
by a JavaScript engine is an app property. So far, this and the app’s name are the
only app properties that Actinium uses and are therefore integrated into the instance
properties. However, it is possible that more such properties occur in the future and
should be treated apart from instance properties.
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2 Design Overview

Instance properties: Properties that control a single app-instance are termed instance
properties. For example, the name of the app-instance, which also is the instance’s
resource’s name, is an instance property. Just as well, whether the specific instance
is started, stopped or restarting at the moment, is an instance property. Instance
properties are restrictions and boundaries for an app-instance. They control the
behavior of an app-instance and not vice-versa. If we introduced policies at some
future point, e.g. not allowing an app-instance to run during the night or forbid to
access some specific other resources, we would implement such policies as instance
properties.

It is possible to define (start-) parameters for an app-instance. In our example
from above with the power consumption observing app, we define a parameter
that tells the app code, which floor’s devices it is supposed to observe. Apps,
meaning the code, can read but not write these properties. It is a crucial design
decision to not let app-instances modify their properties themselves. Otherwise, if
an app instance managed its instance properties itself, it might just refuse to accept
property updates. Be it because of a careless implementation by the developer
of an app or because of an intended denial of cooperation, an app might just not
initiate its own shutdown, for example. Instead, there is one separate resource per
app-instance that holds the corresponding set of instance properties (configuration).
Actinium provides a specific parent resource that contains all these app-instances’
configuration resources. To modify instance properties, we send requests to the
responsible resource which then changes the values, notifies potential subscribers
and then takes actions according to the new values. For example, when we send
the resource a request to stop the corresponding app-instance and the resource will
initiate its shutdown.

Currently, Actinium uses 12 predefined instance properties. See table 2.1.

App internal properties: Properties that are part of the app’s program code are termed
internal properties. These are the properties that an app instance manages itself
and possibly exports with its subresources. For example, the sampling interval that
an app uses to update its values is an internal property. The app might provide a
subresource which represents that property and to which a request can be sent to
either retrieve or adjust it.
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2.2 Resource Layout

Instance properties
Property Type Description
app String Name of the app.
dir path String Path to the directory that contains the app.
type String Type of the app (e.g. JavaScript).
name String Name of the app-instance.
resource title String Title of the CoAP resource.
resource type String Type of the CoAP resource.
start on startup true/false Whether the app-instance should automat-

ically start, when Activium starts up or
not.

allow output true/false Whether the app-instance is allowed to
print to the standard output stream.

allow error output true/false Whether the app-instance is allowed to
print to the standard error output stream.

enable request true/false Whether requests for the app-instance get
delivered or not.

running start/stop/restart Running status of the app-instance.
availability available/

unavailable
Whether this app-instance is available or
has been deleted and is going to be cleaned
up.

Table 2.1: Predefined instance properties of an app-instance.

2.2 Resource Layout

The resource structure of Actinium has to represent several entities. First, singleton resources
that represent global data like the server properties or the statistics resource. Second, ports for
installing, deleting and updating apps. Finally, a tree with resources for apps, their app-instances
and their instance properties (configuration). An app-instance must have the same name as the
corresponding resource that holds its configuration.

Actinium’s functionality is split up into five different resources:

/install: The install-resource is the reception point for new apps and the parent resource of all
installed apps. See chapter 2.3 Installation Process.

/config: This resource represents the server properties.

/stats: The stats-resource monitors the app’s instances. See chapter 3.3 Stats Resource.

/apps/appconfigs: The appconfigs-resource holds one subresource per app-instance. Each such
subresource contains the instance-properties for its corresponding app-instance.
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2 Design Overview

/apps/running: The running-resource holds the running app-instance’s subresources. There is
exactly one root-resource per app-instance which can contain further subresources. If an
app-instance shuts down, it will be removed from the running-resource.

In this section, we discuss the different resource layouts we have evaluated and compare them
to each other. Let an app be the code of an app, that has been sent to Actinium. Imagine we
had n apps app1, app2, . . . , appn. Of each appk we had nk instances instancek,1, instancek,2,
. . . instancek,nk and nk configurations con f igk,1, con f igk,2, . . . con f igk,nk .

We have evaluated three different resource layouts of which we have chosen the first one.

• Grouped by resource type layout, see figure 2.1 a)
• Grouped configs layout, see figure 2.1 b)
• Grouped apps layout, see figure 2.1 c)

With the chosen resource layout, we group the different types of resources (apps, configs and
instances) together under a common subresource per type. Thus, the install-resource contains
all n apps, the appconfigs-resource contains all configurations con f igk,i and the running-resource
contains all instancek,i that are running at the moment.

In the second layout the configurations con f igk,i are placed right under their corresponding
appk. Thus splitting up the group of configurations and distributing them over the installed apps.
As a result, the controlling entities (the code and instance properties) of an app-instance lie close to
each other. The running app-instances instacek,i remain grouped together as subresources of the
running-resource.

In both layouts, there is a clear separation between the installed apps and their running app-
instances since they are subresources of two different parents. Hence, the code of an app can be
maintained independently from its app-instances. Since all instances are siblings, they must have
different names. This could be seen as a disadvantageous restriction of names or as advantageous
guarantee for an absence of name conflicts between app-instances.

A disadvantage of the grouped configs layout is the mapping between a running app-instance
and its corresponding configuration. The set of app-instances is not sorted in any way (unlike in the
diagram). For a user, who knows the name instancename of an app-instance, this is the only hint he
has to find the corresponding configuration. However, these configurations are distributed over all
n installed apps. To find the correct URI /install/appname/instancename, he has to search through
all the apps until he finds the installed app appname that contains the configuration instancename.
In contrast, in the first layout, if we know the name instancename, we immediately know the URL
for the corresponding configuration: /install/appconfigs/instancename.

In the third resource layout the app-instances are split up and distributed over the apps as well.
Thus, each app appk has two subresources: running for its running app-instances instancek,i and
appconfigs for its app-instances’ configurations con f igk,i. All resources that somehow relate to the
same app structure a separate tree.

Since neither the app-instances nor the configurations of different apps are siblings, we have
more freedom for names. In the grouped apps layout, app-instances of different apps are allowed
to have the same name. We also do not have a problem, finding the URI of a configuration
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2.3 Installation process

corresponding to an arbitrary app-instance. However, a running app-instance is a grand-child of
the resource that represents the app and its code. Hence, maintainability of an app’s code is not
independent of its app-instances.

A further advantage of the chosen layout, that groups resources by their types, is the extendibility
of the resources for installed apps. In the second and third layout, these resources appk have
subresources, where in the first they do not. Therefore, we can extend the model of an app in the
future. In particular, this might come in handy, if we end up integrating broader support for app
properties (which are not instance properties) at some future point.

In conclusion, we decided for the tradeoff of the grouped by resource type layout, because it
provides a consequent grouping of the different resource types, independence of app-instances and
their code, easy URI mapping and extensibility.

2.3 Installation process

The installation process starts at the install-resource. It expects a POST request with the app’s
JavaScript code as payload. The request has to be addressed to the install resource’s URI combined
with a query that contains the name of the new app. To add a new app called myapp for example,
we send its code as a POST request to the URI /install?myapp. The install-resource then stores the
code on disk and adds a new subresource /install/myapp that represents the new app. From this
app, we now can create one or more instances.

To create a new instance of an app, send a POST request to it that contains at least the definition
for the name property in the form name = myname. The name must be different from all other
existing instances of any app. It is also possible to define further properties in the form key =

value. In particular one might want to define any predefined instance-properties or start parameter
for the app-instance. If a predefined property is not explicitly defined, a default value will be
chosen. Actinium then creates two new resources. First, a new subresource for app/appconfigs that
holds the instance-properties. Second, a new subresource for apps/running that contains the app
itself.

To remove a single app-instance, send a DELETE request to the corresponding configuration
resource. To update the instance-properties of a single app-instance, send a POST request to the
corresponding configuration resource with the new property values in the form key = value. To
remove an app, send a DELETE request to it. Actinium then will remove the app, delete it from
disk, and also stop and remove all instances of that app. To update an app, send a PUT request
with the updated program code to it. Actinium then will update the app and restart all its instances.

2.4 Isolation of apps from the underlying system

For a developer, JavaScript is a powerful tool for creating apps. Developer can come up with
anything and realize it as an app. Freedom for a developer bears, however, a tricky challenge for
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a) Grouped by resource
type.
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b) Grouped configs layout.

/

config

stats

install

app1
config1,1
...

config1,n1

app2
config2,1
...

config2,n2

...

appn
confign,1
...

confign,nn

running

instace1,1
instace1,2
...

instace1,n1

instace2,1
...

instacen,nn

c) Grouped apps layout.
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Figure 2.1: Resource layouts: a) Group together the resources for configurations, running
apps and installed apps respectively. b) One group per app and its instances’
configurations and one group for all running app-instances. c) One group per
app and its instances’ configurations and running app-instances.

Actinium. It has to expect anything imaginable in JavaScript: Malfunctions, exceptions, endless
loops, deadlocks, and even evil behavior. For this project we omit evil intention of a developer
and assume malfunctions happen due to a careless but unintended erroneous implementation. For
Actinium to be able to handle such kinds of programs, apps must be isolated from the underlying

8



2.4 Isolation of apps from the underlying system

system, in particular from Californium, and from other apps. If one app fails, no other app or
component of the system must be affected by the failure.

Californium is the app’s mailman. Every request targeting an app passes through it. The core
work of Californium, handling requests, is done by the so called ReceiverThread. When a request
arrives, Californium looks for the destination resource whereon the ReceiverThread executes
this resource’s request handling method. As long as the ReceiverThread executes the request
handler and doesn’t yet return, it is not available for other incoming or outgoing requests. If
the request handler takes a very long time to finish or is even stuck in a deadlock or busy-loop,
the ReceiverThread is no longer available. Without ReceiverThread, Californium stands still.
Therefore we essentially have to protect the ReceiverThread from malfunctioning apps.

Actinium executes all app-instances concurrently, i.e., in a separate thread, thus maximizing
parallelism among them. An app-instance’s thread first executes the app’s JavaScript code and
initializes possible variables and dependencies to other apps. Furthermore, every app-instance
holds a queue for requests. If a request for an app-instance arrives, the ReceiverThread puts it into
the app-instance’s request queue. It is then the app-instance’s executing thread that executes the
corresponding request handler, see Figure 2.2.

Figure 2.2: Californium’s ReceiverThread receives requests and passes them through a
queue to the target app-instance. The app-instance’s thread then executes the
app-instance’s request handler.

This design maximizes the ReceiverThread’s responsiveness and protection from failures within
app-instances. If an app-instance crashes, it no longer responds to requests but doesn’t affect any
other component of Actinium. One might consider limiting the request queue to some number
of requests and, if full, drop further requests. This would prevent Actinium from unboundedly
aggregating requests after an app-instance has crashed.
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2 Design Overview

We also considered using two threads per app-instance. One for executing the app’s JavaScript
code which then would be allowed to run infinitely and another one for executing the app-instances
request handlers. This led to two problems, however. First, a request handler might be executed
before the corresponding variables have been initialized. Second, the developer would have faced
an inherently multi-threaded environment with all associated challenges. Therefore we discarded
this idea.
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3 Implementation

In this section we omit the distinction between an app and its app-instances. Thus, the term app is
used interchangeably with the term app-instance.

3.1 CoAPRequest

Actinium’s communication bases on the CoAP protocol. If an app wants to send a CoAP request
to another resource, Californium provides classes and methods to do so. For our apps, written in
JavaScript, however, we strive for an even simpler, yet powerful, API. We introduce the CoAPRe-
quest object, an API similar to the well-known XMLHttpRequest API of AJAX [11]. CoAPRequest
provides the same main methods open(...), send(...), abort(...) with equivalent behavior
as XMLHttpRequest. Furthermore it is possible to get and set request headers. After certain events,
homonymous listeners as in XMLHttpRequest such as onreadystatechange, onload, onerror and
ontimeout are called if assigned to by the developer. In contrast to XMLHttpRequest, the states
HEADERS RECEIVED (numeric value 2) and LOADING (numeric value 3) have been omitted,
since CoAP is a UDP-based protocol where the content arrives atomically. The CoAPRequest’s
field status corresponds to the CoAP status (e.g. “Content” with value 2.05), while the field httpsta-
tus corresponds to the according status from HTTP (e.g., “OK” with value 200) [10]. Following is
a simple code demonstration, how to fetch data from a CoAP resource.

var client = new CoAPRequest();

client.onreadystatechange = handler

client.open("GET", "coap://mydomain/myresource");

client.send();

function handler() {

if (this.readyState==this.DONE) {

if (this.status==this.Content) {

processData(this.responseText);

}

}

}

The demonstration example uses an asynchronous request. If the app receives a response, it
calls the onreadystatechange listener with readystate DONE (numerical value 4) and the listener
onload.
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3 Implementation

CoAPRequest also provides synchronous requests. In that case, the executing thread stops until
a response is available. It is also possible to set a timeout for the CoAP request. If a timeout occurs
the app calls the listener ontimeout if defined, and sets an error flag, see appendix A.

3.2 Encapsulated commands

Actinium enriches the JavaScript environment with a few auxiliary functions to enhance developers’
productivity. In the JavaScript code, those functions are accessed via a predefined object, called
app. For instance, to get the time in milliseconds or nanoseconds since 1970, we use the command
app.getTime() or app.getNanoTime() respectively.

app.dump and app.error: For debugging the app or logging some events, the functions
app.dump(...) and app.error(...) give access to the standard output and error
stream respectively.

app.getProperty: The function app.getProperty(key) returns the value of the given prop-
erty from the instance-properties of the app or null if not found. The function
app.getProperty(key, default) works likewise but returns the default value if no
property is found. Note, that we restrict apps to only read from those properties but not
write to them.

app.root: The object app.root serves as root of the resource hierarchy. It conforms to the API
for resources from Californium. With app.root.addSubresource(...), an app adds its own
subresources as children to the root.

onget, onpost, onput, ondelete: For an app to bind a function as GET-, POST-, PUT- or
DELETE-request handler to a resource, we use the function-objects onget, onpost, onput
and ondelete respectively. For instance, a simple Hello world program is realized by only
few lines.

app.root.onget = function(request) {

request.respond(this.Content, "hello world");

}

onunload: In some cases, when an app is shutting down, it might want to do some cleanup before.
For instance, an app should cancel observation relationships to other resources so that
other resources no longer send messages to the app. The object app provides the function
onunload to which any function can be assigned to and which Actinium will call when the
app shuts down.
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3.3 The stats resource

Auxiliary Functions
Function Description
root The CoAP resource that represents this app.
dump(String) Prints to the standard output stream.
error(String) Prints to the standard error output stream.
shutdown() Stops the app.
restart() Restarts the app.
sleep(Integer) Sleeps for the specified amount of milliseconds.
getTime() Returns the current time in milliseconds (since 1970).
getNanoTime() Returns the current value of the most precise available

system timer, in nanoseconds.
getProperty(Key) Searches for the property with the specified key in this

property list. The method returns null if the property
is not found.

getProperty(Key, Default) Searches for the property with the specified key in this
property list. The method returns the default value
argument if the property is not found.

onunload Will be called, when the app shuts down.

Table 3.1: Auxiliary Functions for JavaScript apps

3.3 The stats resource

The stats-resource provides information about the apps which can be retrieved by a GET request.
It uses Java’s ThreadMXBean 1 to measure the time the CPU has spent within the app. Whether
ThreadXMBean is supported and the accuracy of the results depends on the JVM and the operating
system. We have modified Californium’s request delivery mechanism to record all incoming
requests. The stats-resource counts the requests and its payloads in bytes for each app and for each
its subresources. This information gives us a fine grasp, about an app’s CPU usage and the traffic
towards the app. If Actinium stresses the CPU, an end-user could check which app causes the high
CPU load. Furthermore he could check, whether the app is congested by many incoming requests
and stop the app if needed.

1http://docs.oracle.com/javase/6/docs/api/java/lang/management/ThreadMXBean.html, December 12,
2011
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4 Performance Evaluation

Actinium is designed to host and execute application logic and we require an app reach a satisfying
performance. In this section, we evaluate the performance of Rhino for JavaScript apps in Actinium.
First, we compare JavaScript apps running on Actinium in Rhino to JavaScript apps running on
Firefox. Second, we compare JavaScript apps to apps, written in Java. We run our tests on a HP
EliteBook 8530w with Intel(R) Core(TM)2 Duo CPU T9400, 2.53 GHz and 4 GB memory with
Windows 7 Professional x64 Service Pack 1.

4.1 Benchmark Methodology

We compare three different run-time systems:

• Java 1.6.0 21 with Java HotSpot 64-Bit 1

• Actinium with Rhino 1.7R3 2

• Firefox 10.0.1 with Jägermonkey 3

We have compiled the java programs with javac -g:none -O to exclude debugging information
and turn on optimization, and ran them with java -hotspot to activate the just-in-time compiler
within the JVM. Rhino 1.7R3 from June 2011 is currently the most recent version and supports
JavaScript 1.8. Mozilla Firefox 10.0.0.1 uses the JavaScript engine SpiderMonkey with the
method-JIT JägerMonkey 4, written in C/C++ 5.

Since JavaScript apps are supposed to be light-weight, we don’t expect heavy I/O operations for
instance but rather arithmetic computations. We use three different algorithms in our benchmark:

• Recursive Fibonacci algorithm 6

• Quicksort
• Newton’s Square Root algorithm 7

We write all three algorithms equivalently in JavaScript and Java.

1http://www.oracle.com/technetwork/java/javase/6u21-156341.html, February 12, 2012
2http://www.mozilla.org/rhino/, February 10, 2012
3https://wiki.mozilla.org/JaegerMonkey, February 12, 2012
4http://blog.mozilla.com/dmandelin/2010/09/08/presenting-jagermonkey/, February 12, 2012
5https://developer.mozilla.org/en/ SpiderMonkey, February 12, 2012
6https://wiki.mozilla.org/JaegerMonkey, February 12, 2012
7http://en.wikipedia.org/wiki/Newton%27s method#Square root of a number, February 12, 2012
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4 Performance Evaluation

The Recursive Fibonacci algorithm computes the Fibonacci number by repeatedly, recursively
calling itself. This causes a huge number of function calls for which we want to see, how efficient
the run-time systems perform. We measure the algorithm’s time for inputs 30, 35 and 40. Quicksort
sorts an array of double-precision floating point numbers. This benchmark focuses on how efficient
the run-time systems handle memory accesses. We measure the algorithm’s times to sort 104, 105,
106 and 107 numbers. Newton’s Square Root algorithm is a fixed-point algorithm that computes
the square root for a number. Since the result doesn’t matter, we always use just eight iterations.
With this algorithm we compare how efficiently the run-time systems deal with floating point
operations. For an input n, we compute the square roots of all natural numbers from 1 to n. We
measure the algorithm’s time for inputs 105, 106 and 107.

We use the K-best measurements method 8 with K=10. Thus, we run every test for each input
on every run-time system 10 times and take the minimal elapsed.

4.2 Results

Fibonacci
Input Rhino Firefox Java Rhino/Firefox Rhino/Java
30 162 ms 25 ms 9 ms 6 18
35 1796 ms 278 ms 87 ms 6 21
40 20738 ms 3105 ms 969 ms 7 21

Quicksort
Input Rhino Firefox Java Rhino/Firefox Rhino/Java
104 18 ms 2 ms 2 ms 9 9
105 242 ms 26 ms 11 ms 9 22
106 3165 ms 312 ms 131 ms 10 24
107 46058 ms 3560 ms 1552 ms 13 30

Newton
Input Rhino Firefox Java Rhino/Firefox Rhino/Java
105 42 ms 16 ms 7 ms 3 6
106 423 ms 162 ms 67 ms 3 6
107 4219 ms 1625 ms 671 ms 3 6

Table 4.1: Elapsed times for Fibonacci, Quicksort and Newton. For each input, every
algorithm runs in the run-time systems Rhino, Firefox and Java (left). The ratio
between the times of Rhino and Firefox and the ratio between the times of
Rhino and Java (right).

8http://www.cs.rochester.edu/ cding/Teaching/252Spring2003/LectureNotes/Time.ppt
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4.2 Results

a) Algorithms with highest input values. b) Runtime ratio between Rhino and Firefox
and Java for Quicksort.

Figure 4.1: a) Runtimes for all engines for all algorithms with the highest tested input
values (40 for Fibonacci, 107 for Quicksort and Newton). Rhino clearly is
slower than Firefox and Java but it also depends on the algorithm. b) The ratio
between the runtimes of Rhino and Firefox and Java for Quicksort. The ratio
increses for higher input values. Firefox and Java scale better than Rhino.

Table 4.1 clearly shows that the elapsed time for Rhino to execute an algorithm is higher than
the elapsed times of Firefox and Java. Figure 4.1 a) shows the performance differences of the
engines for the elapsed times for the highest inputs per algorithm. Clearly, Rhino takes a multiple
of the time of the other two engines.

In contrast to Fibonacci and Newton, Quicksort’s performance relative to other engines also
depends on the array size. The ratio between Rhino’s and the other engine’s elapsed times grows
for bigger arrays. For smaller arrays, Rhino takes up to 9 times longer than Firefox and Java. For
a huge array of 107 double-precision numbers Rhino becomes 13 times slower than Firefox and
even 30 times slower than Java as shown in figure 4.1 b). The memory management of Rhino is
not as efficient as that of the others. However, it is very unlikely an app ever has to sort such big
arrays. On our test computer we easily can sort 105 doubles within a second with a non-optimized
Quicksort algorithm. This should suffice by far for any reasonable app.

The relative performance difference depends severely on the algorithm. Rhino roughly takes
6 times longer than Firefox and 20 times longer than Java to perform Fibonacci as shown in see
figure 4.2 a). Rhino’s mechanism for invoking methods clearly is not as fast as Firefox’s JavaScript
engine and the Java runtime engine.

Rhino performs better for the Newton algorithm. Rhino’s performance is only 3 times slower
than Firefox’s and 6 times slower than Java’s performance as shown in figure 4.2 b). Unit operations
like plus, minus, multiplication and division can be performed equally fast for any run-time. The
performance differences merely arise from loading and storing values in variables.

A real-world app will not consist of only one kind of algorithm as the one-sided algorithms
above but rahter a mix of it. Therefore, performances of real-world apps are expected to vary
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4 Performance Evaluation

a) Fibonnaci for inputs 30, 35, 40 b) Newton for inputs 105, 106, 107

Figure 4.2: a) Percentaged elapsed times of each engine for Fibonnaci compared to Rhino
as 100%. b) Percentaged elapsed times of each engine for Newton’s Square
Root algorithm compared to Rhino as 100%.

between lower and upper measurement boundaries of these algorithms. For a client that has sent a
request to an app not only the time to handle the request matters but also the transmission time for
the request and the response. To compute the complete waiting time of a client for a response, we
have to add the processing time of the app to the latency of the network. Kovatsch [5] shows that
this latency strongly depends on the size of the payload and the amount of hops a message has to
pass. Kovatsch’s measurements vary between about 50 ms latency for 64 bytes payload and direct
network connection between client and server and about 1600 ms latency for 512 bytes payload
and a network connection over 3 intermediate hops between client and server. No matter how fast
a request is handled, the network latency prevails as lower bound for the response time.

Rhino uses Java reflection to invoke JavaScript functions and is therefore not as efficient as
Firefox’ JavaScript engine, written in C/C++. Apps that require very high throughput or even
real-time would not be implemented in JavaScript anyway but with Java or even C. It is clear
that apps, written in JavaScript, cannot achieve the performance of compiler-optimized Java code.
However, Actinium executes each app in a separate thread. Californium’s ReceiverThread delivers
requests sequentially, but the handling of requests for an app is done by its thread. Hence, apps
inherently handle incoming requests concurrently and thus can utilize multicore systems. A single
app written in Java may be much faster than a JavaScript app, but as multicore systems evolve
and a host for Actinium includes more and more CPUs in the future, JavaScript apps catch up. In
contrast, programming Java resources that handle requests concurrently in separate threads requires
a major effort from a developer, cooperation among all resources and yet is error-prone.

When deciding for a programming language, a tradeoff between performance and convenience
for developers is required. In an environment of simple apps for which even a lower performance is
enough by far, convenience must be the dominant factor for the design of a programming language.
JavaScript serves this purpose best, as it is a simple yet powerful and very dynamic high-level
language. Developer conveniently can design robust, reliable, traceable, portable and legible apps
and maintain them at runtime.
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4.3 Outlook

4.3 Outlook

One of the major challenges for Rhino is its support for dynamic typing. “When developers
write engines for dynamically typed languages that run in the JVM, they have to satisfy the
requirements of the Java bytecode that the JVM executes.” 9 Java 7 introduces a new bytecode
instruction invokedynamic and a new method linkage mechanism. By using this new instruction,
the developers of Rhino expect a significant speedup that makes Rhino much more competitive 10.
If Rhino implements this optimization in a future version, its performance for our three algorithms
has to be reevaluated and will most likely perform much better.

9http://java.sun.com/developer/technicalArticles/DynTypeLang/, February 18, 2012
10http://www.infoq.com/news/2011/07/rhino-invokedynamic, February 18, 2012
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5 Conclusion

Actinium, the implementation of our app-server design, builds upon the Californium (Cf) CoAP
framework and extends it with powerful features. Lightweight apps can be written conveniently in
JavaScript and dynamically installed, updated, removed, and monitored. Configurations allow the
definition of parameters and boundaries for apps and provide a strong control mechanism. Actinium
produces a smart resource layout that structures all components and updates it automatically
according to installation changes. The installation process is straight forward and allows reusing
an app’s code multiple times, thus saving system resources and enhancing maintainability.

Actinium keeps apps in a sandbox and serves as a layer between them and the outside world.
It concurrently executes each app in a separate thread and passes all incoming requests to them
through a queue, thus protecting Californium and apps from malfunctioning apps. Actinium arms
JavaScript apps with a convenient though powerful API, thus maximizing efficient development of
robust apps. The CoAPRequest API is kept similar to the well-known XMLHttpRequest API and
guarantees reliable and traceable communication with other CoAP resources.

Actinium’s integrated JavaScript engine Rhino is clearly slower then Firefox’s engine or the
JVM for Java apps. This depends strongly on the algorithm, however, and is supposed to improve
drastically due to better scripting support of Java 7. Moreover, since Actinium executes apps
concurrently, they can utilize multicore processors. For reasonable apps, Rhino’s performance
suffices by far.

Actinium is extensible. Further engines for apps written in other languages can be integrated,
using Actiniums interfaces. Configurations are very flexible and adaptable to future changes and
extensions. The resource layout is elaborate and provides numerous nodes for extensions.
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A JavaScript and CoAPRequest
Examples

Actinium provides a rich API to JavaScript apps. We show a few example apps to give the reader a
rough grasp how to write a JavaScript app for Actinium.

Hello World App

The app responds to a GET request with “Hello World”.

app.root.onget = function(request) {

request.respond(this.Content, "Hello World");

}

Handling requests

The app counts POST requests. If a POST request arrives, the handler accepts the request, extracts
the payload from the request, increases the counter by one, computes the result and sends the
payload back together with the counter.

var counter = 0;

app.root.onpost = function(request) {

// accept request

request.accept();

// get payload and increase counter

var payload = request.getPayloadString();

counter++;

// compute result

app.sleep(1000);
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A JavaScript and CoAPRequest Examples

// respond

request.respond(this.Content, "payload: "+payload+", counter = "+counter);

}

Subresources

Create a new subresource, add it to app.root and define a handler for GET requests.

res = new JavaScriptResource("subresource");

app.root.addSubResource(res);

res.onget = function(request) { ... }

Send a GET request to a CoAP resource

Fetch data from a CoAP resource over the network using the CoAPRequest API.

var client = new CoAPRequest();

client.onreadystatechange = handler;

client.open("GET", "coap://mydomain.myresource");

client.send();

function handler() {

if (client.readyState==this.DONE) {

if (client.status==client.Content) {

processData(client.responseText);

}

}

}

Send a POST request to a CoAP resource

Send a POST message to a CoAP resource.

function sendMessage(message) {

var client = new CoAPRequest();

client.open("POST", "coap://mydomain.myresource");

client.setRequestHeader("Content-Type", "text/plain");

client.send(message);

}
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CoAPRequest Timeout

Send a POST request using a timeout and react to network problems and successful transmissions.

var client = new CoAPRequest();

client.open("POST", "coap://mydomain.myresource");

client.timeout = 1000; // one second

client.onload = successhandler; // called if we successfully get response in time

client.onerror = errorhandler; // called if there is a network error

client.ontimeout = timeouthandler; // called if no response in time

client.send(data);
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